328,760 research outputs found

    Consistency in scalable systems

    Full text link
    [EN] While eventual consistency is the general consistency guarantee ensured in cloud environments, stronger guarantees are in fact achievable. We show how scalable and highly available systems can provide processor, causal, sequential and session consistency during normal functioning. Failures and network partitions negatively affect consistency and generate divergence. After the failure or the partition, reconciliation techniques allow the system to restore consistency.This work has been supported by EU FEDER and Spanish MICINN under research grants TIN2009-14460-C03-01 and TIN2010-17193.Ruiz Fuertes, MI.; PallardĂł Lozoya, MR.; Muñoz-EscoĂ­, FD. (2012). Consistency in scalable systems. En On the Move to Meaningful Internet Systems: OTM 2012. Springer Verlag (Germany). 7566:549-565. https://doi.org/10.1007/978-3-642-33615-7_7S5495657566Ahamad, M., Bazzi, R.A., John, R., Kohli, P., Neiger, G.: The power of processor consistency. In: Proceedings of the Fifth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA 1993, pp. 251–260. ACM, New York (1993), http://doi.acm.org/10.1145/165231.165264Alvarez, A., ArĂ©valo, S., Cholvi, V., FernĂĄndez, A., JimĂ©nez, E.: On the Interconnection of Message Passing Systems. Inf. Process. Lett. 105(6), 249–254 (2008)Amazon Web Services LLC: Amazon Simple Storage Service (S3). Website (March 2011), http://aws.amazon.com/s3/Baker, J., Bond, C., Corbett, J.C., Furman, J.J., Khorlin, A., Larson, J., LĂ©on, J., Li, Y., Lloyd, A., Yushprakh, V.: Megastore: Providing Scalable, Highly Available Storage for interactive services. In: 5th Biennial Conf. on Innovative Data Systems Research (CIDR), Asilomar, CA, USA, pp. 223–234 (January 2011)Baldoni, R., Beraldi, R., Friedman, R., van Renesse, R.: The Hierarchical Daisy Architecture for Causal Delivery. Distributed Systems Engineering 6(2), 71–81 (1999)Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database Systems. Addison-Wesley (1987)Bernstein, P.A., Reid, C.W., Das, S.: Hyder - A Transactional Record Manager for Shared Flash. In: 5th Biennial Conf. on Innovative Data Systems Research (CIDR), Asilomar, CA, USA, pp. 9–20 (January 2011)Bershad, B.N., Zekauskas, M.J., Sawdon, W.A.: The Midway Distributed Shared Memory System. In: Proc. IEEE CompCon Conf. (1993)Brewer, E.A.: Towards Robust Distributed Systems (Abstract). In: Proc. ACM Symp. Princ. Distrib. Comput., p. 7 (2000)Budhiraja, N., Marzullo, K., Schneider, F.B., Toueg, S.: The Primary-Backup Approach. In: Mullender, S.J. (ed.) Distributed Systems, 2nd edn., ch. 8, pp. 199–216. Addison-Wesley, ACM Press (1993)Campbell, D.G., Kakivaya, G., Ellis, N.: Extreme Scale with Full SQL Language Support in Microsoft SQL Azure. In: Intnl. Conf. on Mngmnt. of Data (SIGMOD), pp. 1021–1024. ACM, New York (2010), http://doi.acm.org/10.1145/1807167.1807280Cholvi, V., JimĂ©nez, E., Anta, A.F.: Interconnection of distributed memory models. J. Parallel Distrib. Comput. 69(3), 295–306 (2009)Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen, H., Puz, N., Weaver, D., Yerneni, R.: PNUTS: Yahoo!’s hosted data serving platform. PVLDB 1(2), 1277–1288 (2008)Daudjee, K., Salem, K.: Lazy Database Replication with Ordering Guarantees. In: Proc. Int. Conf. Data Eng., pp. 424–435. IEEE-CS (2004)Daudjee, K., Salem, K.: Lazy Database Replication with Snapshot Isolation. In: Proc. Int. Conf. Very Large Data Bases, pp. 715–726. ACM (2006)DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s Highly Available Key-value Store. In: ACM Symp. Oper. Syst. Princ., pp. 205–220 (2007)FernĂĄndez, A., JimĂ©nez, E., Cholvi, V.: On the interconnection of causal memory systems. J. Parallel Distrib. Comput. 64(4), 498–506 (2004)Gilbert, S., Lynch, N.A.: Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web Services. ACM SIGACT News 33(2), 51–59 (2002)Goodman, J.R.: Cache Consistency and Sequential Consistency. Tech. Rep. 61, SCI Committee (March 1989)Gray, J., Helland, P., O’Neil, P.E., Shasha, D.: The Dangers of Replication and a Solution. In: Proc. ACM SIGMOD Int. Conf. Manage. Data, pp. 173–182. ACM (1996)Helland, P., Campbell, D.: Building on Quicksand. In: Proc. Bienn. Conf. Innov. Data Syst. Research (2009), www.crdrdb.orgHutto, P., Ahamad, M.: Slow Memory: Weakening Consistency to Enhance Concurrency in Distributed Shared Memories. In: Proceedings of the 10th International Conference on Distributed Computing Systems, pp. 302–311 (May 1990)Johnson, S., Jahanian, F., Shah, J.: The Inter-group Router Approach to Scalable Group Composition. In: ICDCS, pp. 4–14 (1999)Kraska, T., Hentschel, M., Alonso, G., Kossmann, D.: Consistency Rationing in the Cloud: Pay only when it matters. PVLDB 2(1), 253–264 (2009)Lamport, L.: How to Make a Multiprocessor Computer that Correctly Executes multiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979)Lipton, R.J., Sandberg, J.S.: Pram: A Scalable Shared Memory. Tech. Rep. CS-TR-180-88, Princeton University, Department of Computer Science (September 1988)Mosberger, D.: Memory Consistency Models. Operating Systems Review 27(1), 18–26 (1993)Ruiz-Fuertes, M.I., Muñoz-EscoĂ­, F.D.: Refinement of the One-Copy Serializable Correctness Criterion. Tech. Rep. ITI-SIDI-2011/004, Instituto TecnolĂłgico de InformĂĄtica, Valencia, Spain (November 2011)Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S., Hachem, N., Helland, P.: The End of an Architectural Era (It’s Time for a Complete Rewrite). In: 33rd Intnl. Conf. on Very Large Data Bases (VLDB), pp. 1150–1160. ACM Press, Vienna (2007)Terry, D.B., Demers, A.J., Petersen, K., Spreitzer, M., Theimer, M., Welch, B.B.: Session Guarantees for Weakly Consistent Replicated Data. In: Proc. Int. Conf. Parallel Distrib. Inform. Syst., pp. 140–149. IEEE-CS (1994)Vogels, W.: Eventually Consistent. Communications of the ACM (CACM) 52(1), 40–44 (2009)VoltDB, Inc.: VoltDB technical overview: A high performance, scalable RDBMS for Big Data, high velocity OLTP and realtime analytics. Website (April 2012), http://voltdb.com/sites/default/files/PDFs/VoltDBTechnicalOverview_April_2012.pdfWiesmann, M., Schiper, A.: Comparison of Database Replication Techniques Based on Total Order Broadcast. IEEE T. Knowl. Data En. 17(4), 551–566 (2005

    CAP Theorem: Revision of its related consistency models

    Get PDF
    [EN] The CAP theorem states that only two of these properties can be simultaneously guaranteed in a distributed service: (i) consistency, (ii) availability, and (iii) network partition tolerance. This theorem was stated and proved assuming that "consistency" refers to atomic consistency. However, multiple consistency models exist and atomic consistency is located at the strongest edge of that spectrum. Many distributed services deployed in cloud platforms should be highly available and scalable. Network partitions may arise in those deployments and should be tolerated. One way of dealing with CAP constraints consists in relaxing consistency. Therefore, it is interesting to explore the set of consistency models not supported in an available and partition-tolerant service (CAP-constrained models). Other weaker consistency models could be maintained when scalable services are deployed in partitionable systems (CAP-free models). Three contributions arise: (1) multiple other CAP-constrained models are identified, (2) a borderline between CAP-constrained and CAP-free models is set, and (3) a hierarchy of consistency models depending on their strength and convergence is built.Muñoz-EscoĂ­, FD.; Juan MarĂ­n, RD.; GarcĂ­a Escriva, JR.; GonzĂĄlez De MendĂ­vil Moreno, JR.; Bernabeu AubĂĄn, JM. (2019). CAP Theorem: Revision of its related consistency models. The Computer Journal. 62(6):943-960. https://doi.org/10.1093/comjnl/bxy142S943960626Davidson, S. B., Garcia-Molina, H., & Skeen, D. (1985). Consistency in a partitioned network: a survey. ACM Computing Surveys, 17(3), 341-370. doi:10.1145/5505.5508Gilbert, S., & Lynch, N. (2002). Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. ACM SIGACT News, 33(2), 51-59. doi:10.1145/564585.564601Muñoz-EscoĂ­, F. D., & BernabĂ©u-AubĂĄn, J. M. (2016). A survey on elasticity management in PaaS systems. Computing, 99(7), 617-656. doi:10.1007/s00607-016-0507-8Brewer, E. (2012). CAP twelve years later: How the «rules» have changed. Computer, 45(2), 23-29. doi:10.1109/mc.2012.37Attiya, H., Ellen, F., & Morrison, A. (2017). Limitations of Highly-Available Eventually-Consistent Data Stores. IEEE Transactions on Parallel and Distributed Systems, 28(1), 141-155. doi:10.1109/tpds.2016.2556669Viotti, P., & Vukolić, M. (2016). Consistency in Non-Transactional Distributed Storage Systems. ACM Computing Surveys, 49(1), 1-34. doi:10.1145/2926965Burckhardt, S. (2014). Principles of Eventual Consistency. Foundations and TrendsÂź in Programming Languages, 1(1-2), 1-150. doi:10.1561/2500000011Herlihy, M. P., & Wing, J. M. (1990). Linearizability: a correctness condition for concurrent objects. ACM Transactions on Programming Languages and Systems, 12(3), 463-492. doi:10.1145/78969.78972Lamport. (1979). How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE Transactions on Computers, C-28(9), 690-691. doi:10.1109/tc.1979.1675439Ladin, R., Liskov, B., Shrira, L., & Ghemawat, S. (1992). Providing high availability using lazy replication. ACM Transactions on Computer Systems, 10(4), 360-391. doi:10.1145/138873.138877Yu, H., & Vahdat, A. (2002). Design and evaluation of a conit-based continuous consistency model for replicated services. ACM Transactions on Computer Systems, 20(3), 239-282. doi:10.1145/566340.566342Curino, C., Jones, E., Zhang, Y., & Madden, S. (2010). Schism. Proceedings of the VLDB Endowment, 3(1-2), 48-57. doi:10.14778/1920841.1920853Das, S., Agrawal, D., & El Abbadi, A. (2013). ElasTraS. ACM Transactions on Database Systems, 38(1), 1-45. doi:10.1145/2445583.2445588Chen, Z., Yang, S., Tan, S., He, L., Yin, H., & Zhang, G. (2014). A new fragment re-allocation strategy for NoSQL database systems. Frontiers of Computer Science, 9(1), 111-127. doi:10.1007/s11704-014-3480-4Kamal, J., Murshed, M., & Buyya, R. (2016). Workload-aware incremental repartitioning of shared-nothing distributed databases for scalable OLTP applications. Future Generation Computer Systems, 56, 421-435. doi:10.1016/j.future.2015.09.024Elghamrawy, S. M., & Hassanien, A. E. (2017). A partitioning framework for Cassandra NoSQL database using Rendezvous hashing. The Journal of Supercomputing, 73(10), 4444-4465. doi:10.1007/s11227-017-2027-5Muñoz-EscoĂ­, F. D., GarcĂ­a-EscrivĂĄ, J.-R., Sendra-Roig, J. S., BernabĂ©u-AubĂĄn, J. M., & GonzĂĄlez de MendĂ­vil, J. R. (2018). Eventual Consistency: Origin and Support. Computing and Informatics, 37(5), 1037-1072. doi:10.4149/cai_2018_5_1037Fischer, M. J., Lynch, N. A., & Paterson, M. S. (1985). Impossibility of distributed consensus with one faulty process. Journal of the ACM, 32(2), 374-382. doi:10.1145/3149.21412

    A survey of parallel execution strategies for transitive closure and logic programs

    Get PDF
    An important feature of database technology of the nineties is the use of parallelism for speeding up the execution of complex queries. This technology is being tested in several experimental database architectures and a few commercial systems for conventional select-project-join queries. In particular, hash-based fragmentation is used to distribute data to disks under the control of different processors in order to perform selections and joins in parallel. With the development of new query languages, and in particular with the definition of transitive closure queries and of more general logic programming queries, the new dimension of recursion has been added to query processing. Recursive queries are complex; at the same time, their regular structure is particularly suited for parallel execution, and parallelism may give a high efficiency gain. We survey the approaches to parallel execution of recursive queries that have been presented in the recent literature. We observe that research on parallel execution of recursive queries is separated into two distinct subareas, one focused on the transitive closure of Relational Algebra expressions, the other one focused on optimization of more general Datalog queries. Though the subareas seem radically different because of the approach and formalism used, they have many common features. This is not surprising, because most typical Datalog queries can be solved by means of the transitive closure of simple algebraic expressions. We first analyze the relationship between the transitive closure of expressions in Relational Algebra and Datalog programs. We then review sequential methods for evaluating transitive closure, distinguishing iterative and direct methods. We address the parallelization of these methods, by discussing various forms of parallelization. Data fragmentation plays an important role in obtaining parallel execution; we describe hash-based and semantic fragmentation. Finally, we consider Datalog queries, and present general methods for parallel rule execution; we recognize the similarities between these methods and the methods reviewed previously, when the former are applied to linear Datalog queries. We also provide a quantitative analysis that shows the impact of the initial data distribution on the performance of methods

    Control versus Data Flow in Parallel Database Machines

    Get PDF
    The execution of a query in a parallel database machine can be controlled in either a control flow way, or in a data flow way. In the former case a single system node controls the entire query execution. In the latter case the processes that execute the query, although possibly running on different nodes of the system, trigger each other. Lately, many database research projects focus on data flow control since it should enhance response times and throughput. The authors study control versus data flow with regard to controlling the execution of database queries. An analytical model is used to compare control and data flow in order to gain insights into the question which mechanism is better under which circumstances. Also, some systems using data flow techniques are described, and the authors investigate to which degree they are really data flow. The results show that for particular types of queries data flow is very attractive, since it reduces the number of control messages and balances these messages over the node

    Extending a multi-set relational algebra to a parallel environment

    Get PDF
    Parallel database systems will very probably be the future for high-performance data-intensive applications. In the past decade, many parallel database systems have been developed, together with many languages and approaches to specify operations in these systems. A common background is still missing, however. This paper proposes an extended relational algebra for this purpose, based on the well-known standard relational algebra. The extended algebra provides both complete database manipulation language features, and data distribution and process allocation primitives to describe parallelism. It is defined in terms of multi-sets of tuples to allow handling of duplicates and to obtain a close connection to the world of high-performance data processing. Due to its algebraic nature, the language is well suited for optimization and parallelization through expression rewriting. The proposed language can be used as a database manipulation language on its own, as has been done in the PRISMA parallel database project, or as a formal basis for other languages, like SQL

    ABC Diffusion in the Age of Digital Economy: the UK Experience

    Get PDF
    Since the beginning of the 21st century, there has been a call for further research to trace the effects of the speedy changes in business environment on management accounting practices. This study assesses the impact of different information technologies on ABC adoption and implementation. It uses a cross-sectional survey of financial directors and controllers in the UK firms. Postal and electronic questionnaires have been used in order to collect the empirical data. The findings revealed that the rate of ABC adoption has shown a number of changes between 1999 and 2005. The proportions of ABC users and those currently assessing it have dramatically fallen. The percentage of firms rejecting ABC has slightly fallen as well. However, there has been a considerable increase in the number of firms that abandoned ABC implementation and those firms that gave no consideration for its implementation. These results indicate a decrease in the popularity of ABC. ERP systems seem to have a slightly low significant impact on the initial decision of ABC adoption in those firms that do not have any consideration for ABC and firms that have an ERP system before ABC adoption. Furthermore, the results indicate that firms use different information technologies in the ABC assessment and implementation. For ABC assessment, general software applications are the most preferable software packages while a mix of different ABC software packages is the most popular in the case of ABC implementation. Finally, the findings of this study provide an indication on the nature of the possible effect of general IT-related problems on ABC implementation

    Pattern based processing of XPath queries

    Get PDF
    As the popularity of areas including document storage and distributed systems continues to grow, the demand for high performance XML databases is increasingly evident. This has led to a number of research eorts aimed at exploiting the maturity of relational database systems in order to in- crease XML query performance. In our approach, we use an index structure based on a metamodel for XML databases combined with relational database technology to facilitate fast access to XML document elements. The query process involves transforming XPath expressions to SQL which can be executed over our optimised query engine. As there are many dierent types of XPath queries, varying processing logic may be applied to boost performance not only to indi- vidual XPath axes, but across multiple axes simultaneously. This paper describes a pattern based approach to XPath query processing, which permits the execution of a group of XPath location steps in parallel

    The combination of spatial access methods and computational geometry in geographic database systems

    Get PDF
    Geographic database systems, known as geographic information systems (GISs) particularly among non-computer scientists, are one of the most important applications of the very active research area named spatial database systems. Consequently following the database approach, a GIS hag to be seamless, i.e. store the complete area of interest (e.g. the whole world) in one database map. For exhibiting acceptable performance a seamless GIS hag to use spatial access methods. Due to the complexity of query and analysis operations on geographic objects, state-of-the-art computational geomeny concepts have to be used in implementing these operations. In this paper, we present GIS operations based on the compuational geomeny technique plane sweep. Specifically, we show how the two ingredients spatial access methods and computational geomeny concepts can be combined fĂŒr improving the performance of GIS operations. The fruitfulness of this combination is based on the fact that spatial access methods efficiently provide the data at the time when computational geomeny algorithms need it fĂŒr processing. Additionally, this combination avoids page faults and facilitates the parallelization of the algorithms.
    • 

    corecore