2,019 research outputs found

    Memory and Parallelism Analysis Using a Platform-Independent Approach

    Full text link
    Emerging computing architectures such as near-memory computing (NMC) promise improved performance for applications by reducing the data movement between CPU and memory. However, detecting such applications is not a trivial task. In this ongoing work, we extend the state-of-the-art platform-independent software analysis tool with NMC related metrics such as memory entropy, spatial locality, data-level, and basic-block-level parallelism. These metrics help to identify the applications more suitable for NMC architectures.Comment: 22nd ACM International Workshop on Software and Compilers for Embedded Systems (SCOPES '19), May 201

    Design and optimization of a portable LQCD Monte Carlo code using OpenACC

    Full text link
    The present panorama of HPC architectures is extremely heterogeneous, ranging from traditional multi-core CPU processors, supporting a wide class of applications but delivering moderate computing performance, to many-core GPUs, exploiting aggressive data-parallelism and delivering higher performances for streaming computing applications. In this scenario, code portability (and performance portability) become necessary for easy maintainability of applications; this is very relevant in scientific computing where code changes are very frequent, making it tedious and prone to error to keep different code versions aligned. In this work we present the design and optimization of a state-of-the-art production-level LQCD Monte Carlo application, using the directive-based OpenACC programming model. OpenACC abstracts parallel programming to a descriptive level, relieving programmers from specifying how codes should be mapped onto the target architecture. We describe the implementation of a code fully written in OpenACC, and show that we are able to target several different architectures, including state-of-the-art traditional CPUs and GPUs, with the same code. We also measure performance, evaluating the computing efficiency of our OpenACC code on several architectures, comparing with GPU-specific implementations and showing that a good level of performance-portability can be reached.Comment: 26 pages, 2 png figures, preprint of an article submitted for consideration in International Journal of Modern Physics

    The Glasgow Parallel Reduction Machine: Programming Shared-memory Many-core Systems using Parallel Task Composition

    Get PDF
    We present the Glasgow Parallel Reduction Machine (GPRM), a novel, flexible framework for parallel task-composition based many-core programming. We allow the programmer to structure programs into task code, written as C++ classes, and communication code, written in a restricted subset of C++ with functional semantics and parallel evaluation. In this paper we discuss the GPRM, the virtual machine framework that enables the parallel task composition approach. We focus the discussion on GPIR, the functional language used as the intermediate representation of the bytecode running on the GPRM. Using examples in this language we show the flexibility and power of our task composition framework. We demonstrate the potential using an implementation of a merge sort algorithm on a 64-core Tilera processor, as well as on a conventional Intel quad-core processor and an AMD 48-core processor system. We also compare our framework with OpenMP tasks in a parallel pointer chasing algorithm running on the Tilera processor. Our results show that the GPRM programs outperform the corresponding OpenMP codes on all test platforms, and can greatly facilitate writing of parallel programs, in particular non-data parallel algorithms such as reductions.Comment: In Proceedings PLACES 2013, arXiv:1312.221

    Characterizing traits of coordination

    Full text link
    How can one recognize coordination languages and technologies? As this report shows, the common approach that contrasts coordination with computation is intellectually unsound: depending on the selected understanding of the word "computation", it either captures too many or too few programming languages. Instead, we argue for objective criteria that can be used to evaluate how well programming technologies offer coordination services. Of the various criteria commonly used in this community, we are able to isolate three that are strongly characterizing: black-box componentization, which we had identified previously, but also interface extensibility and customizability of run-time optimization goals. These criteria are well matched by Intel's Concurrent Collections and AstraKahn, and also by OpenCL, POSIX and VMWare ESX.Comment: 11 pages, 3 table

    Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS

    Full text link
    GROMACS is a widely used package for biomolecular simulation, and over the last two decades it has evolved from small-scale efficiency to advanced heterogeneous acceleration and multi-level parallelism targeting some of the largest supercomputers in the world. Here, we describe some of the ways we have been able to realize this through the use of parallelization on all levels, combined with a constant focus on absolute performance. Release 4.6 of GROMACS uses SIMD acceleration on a wide range of architectures, GPU offloading acceleration, and both OpenMP and MPI parallelism within and between nodes, respectively. The recent work on acceleration made it necessary to revisit the fundamental algorithms of molecular simulation, including the concept of neighborsearching, and we discuss the present and future challenges we see for exascale simulation - in particular a very fine-grained task parallelism. We also discuss the software management, code peer review and continuous integration testing required for a project of this complexity.Comment: EASC 2014 conference proceedin

    A Parallel Iterative Method for Computing Molecular Absorption Spectra

    Full text link
    We describe a fast parallel iterative method for computing molecular absorption spectra within TDDFT linear response and using the LCAO method. We use a local basis of "dominant products" to parametrize the space of orbital products that occur in the LCAO approach. In this basis, the dynamical polarizability is computed iteratively within an appropriate Krylov subspace. The iterative procedure uses a a matrix-free GMRES method to determine the (interacting) density response. The resulting code is about one order of magnitude faster than our previous full-matrix method. This acceleration makes the speed of our TDDFT code comparable with codes based on Casida's equation. The implementation of our method uses hybrid MPI and OpenMP parallelization in which load balancing and memory access are optimized. To validate our approach and to establish benchmarks, we compute spectra of large molecules on various types of parallel machines. The methods developed here are fairly general and we believe they will find useful applications in molecular physics/chemistry, even for problems that are beyond TDDFT, such as organic semiconductors, particularly in photovoltaics.Comment: 20 pages, 17 figures, 3 table

    Master of Science

    Get PDF
    thesisTo address the need of understanding and optimizing the performance of complex applications and achieving sustained application performance across different architectures, we need performance models and tools that could quantify the theoretical performance and the resultant gap between theoretical and observed performance. This thesis proposes a benchmark-driven Roofline Model Toolkit to provide theoretical and achievable performance, and their resultant gap for multicore, manycore, and accelerated architectures. Roofline micro benchmarks are specialized to quantify the behavior of different architectural features. Compared to previous work on performance characterization, these micro benchmarks focus on capturing the performance of each level of the memory hierarchy, along with thread-level parallelism(TLP), instruction-level parallelism(ILP), and explicit Single Instruction, Multiple Data(SIMD) parallelism, measured in the context of the compilers and runtime environment on the target architecture. We also developed benchmarks to explore detailed memory subsystems behaviors and evaluate parallelization overhead. Beyond on-chip performance, we measure sustained Peripheral Component Interconnect Express(PCIe) throughput with four Graphics Processing Unit(GPU) memory managed mechanisms. By combining results from the architecture characterization with the Roofline Model based solely on architectural specification, this work offers insights for performance prediction of current and future architectures and their software systems. To that end, we instrument three applications and plot their resultant performance on the corresponding Roofline Model when run on a Blue Gene/Q architecture
    • …
    corecore