388 research outputs found

    Parallel Computational Modelling of Inelastic Neutron Scattering in Multi-node and Multi-core Architectures

    Get PDF
    This paper examines the initial parallel implementation of SCATTER, a computationally intensive inelastic neutron scattering routine with polycrystalline averaging capability, for the General Utility Lattice Program (GULP). Of particular importance to structural investigation on the atomic scale, this work identifies the computational features of SCATTER relevant to a parallel implementation and presents initial results from performance tests on multi-core and multi-node environments. Our initial approach exhibits near-linear scalability up to 256 MPI processes for a significant model

    Adaptive heterogeneous parallelism for semi-empirical lattice dynamics in computational materials science.

    Get PDF
    With the variability in performance of the multitude of parallel environments available today, the conceptual overhead created by the need to anticipate runtime information to make design-time decisions has become overwhelming. Performance-critical applications and libraries carry implicit assumptions based on incidental metrics that are not portable to emerging computational platforms or even alternative contemporary architectures. Furthermore, the significance of runtime concerns such as makespan, energy efficiency and fault tolerance depends on the situational context. This thesis presents a case study in the application of both Mattsons prescriptive pattern-oriented approach and the more principled structured parallelism formalism to the computational simulation of inelastic neutron scattering spectra on hybrid CPU/GPU platforms. The original ad hoc implementation as well as new patternbased and structured implementations are evaluated for relative performance and scalability. Two new structural abstractions are introduced to facilitate adaptation by lazy optimisation and runtime feedback. A deferred-choice abstraction represents a unified space of alternative structural program variants, allowing static adaptation through model-specific exhaustive calibration with regards to the extrafunctional concerns of runtime, average instantaneous power and total energy usage. Instrumented queues serve as mechanism for structural composition and provide a representation of extrafunctional state that allows realisation of a market-based decentralised coordination heuristic for competitive resource allocation and the Lyapunov drift algorithm for cooperative scheduling

    Towards Ad-Hoc GPU Acceleration Of Parallel Eigensystem Computations

    Full text link
    This paper explores the early implementation of high- performance routines for the solution of multiple large Hermitian eigenvector and eigenvalue systems on a Graphics Processing Unit (GPU). We report a perfor- mance increase of up to two orders of magnitude over the original EISPACK routines with a NVIDIA Tesla C2050 GPU, potentially allowing an order of magnitude in- crease in the complexity or resolution of a neutron scat- tering modeling application

    Ancient and historical systems

    Get PDF

    High Fidelity Monte Carlo Based Reactor Physics Calculations

    Get PDF
    The thesis focuses on the development of high accuracy Monte Carlo-thermal hydraulics Multiphysics methods, capable of simulating large-scale reactor physics problems at a single fuel pin resolution. To achieve these objective, methods for both improving the physics models and the numerical efficiency of the Monte Carlo eigenvalue calculations are investigated

    Perspectives of Nuclear Physics in Europe: NuPECC Long Range Plan 2010

    Get PDF
    The goal of this European Science Foundation Forward Look into the future of Nuclear Physics is to bring together the entire Nuclear Physics community in Europe to formulate a coherent plan of the best way to develop the field in the coming decade and beyond.<p></p> The primary aim of Nuclear Physics is to understand the origin, evolution, structure and phases of strongly interacting matter, which constitutes nearly 100% of the visible matter in the universe. This is an immensely important and challenging task that requires the concerted effort of scientists working in both theory and experiment, funding agencies, politicians and the public.<p></p> Nuclear Physics projects are often “big science”, which implies large investments and long lead times. They need careful forward planning and strong support from policy makers. This Forward Look provides an excellent tool to achieve this. It represents the outcome of detailed scrutiny by Europe’s leading experts and will help focus the views of the scientific community on the most promising directions in the field and create the basis for funding agencies to provide adequate support.<p></p> The current NuPECC Long Range Plan 2010 “Perspectives of Nuclear Physics in Europe” resulted from consultation with close to 6 000 scientists and engineers over a period of approximately one year. Its detailed recommendations are presented on the following pages. For the interested public, a short summary brochure has been produced to accompany the Forward Look.<p></p&gt
    • 

    corecore