14,545 research outputs found

    Aspects of practical implementations of PRAM algorithms

    Get PDF
    The PRAM is a shared memory model of parallel computation which abstracts away from inessential engineering details. It provides a very simple architecture independent model and provides a good programming environment. Theoreticians of the computer science community have proved that it is possible to emulate the theoretical PRAM model using current technology. Solutions have been found for effectively interconnecting processing elements, for routing data on these networks and for distributing the data among memory modules without hotspots. This thesis reviews this emulation and the possibilities it provides for large scale general purpose parallel computation. The emulation employs a bridging model which acts as an interface between the actual hardware and the PRAM model. We review the evidence that such a scheme can achieve scalable parallel performance and portable parallel software and that PRAM algorithms can be optimally implemented on such practical models. In the course of this review we presented the following new results: 1. Concerning parallel approximation algorithms, we describe an NC algorithm for findings an approximation to a minimum weight perfect matching in a complete weighted graph. The algorithm is conceptually very simple and it is also the first NC-approximation algorithm for the task with a sub-linear performance ratio. 2. Concerning graph embedding, we describe dense edge-disjoint embeddings of the complete binary tree with n leaves in the following n-node communication networks: the hypercube, the dc Bruijn and shuffle-exchange networks and the 2-dimcnsional mesh. In the embeddings the maximum distance from a leaf to the root of the tree is asymptotically optimally short. The embeddings facilitate efficient implementation of many PRAM algorithms on networks employing these graphs as interconnection networks. 3. Concerning bulk synchronous algorithmic, we describe scalable transportable algorithms for the following three commonly required types of computation; balanced tree computations. Fast Fourier Transforms and matrix multiplications

    Aspects of practical implementations of PRAM algorithms

    Get PDF
    The PRAM is a shared memory model of parallel computation which abstracts away from inessential engineering details. It provides a very simple architecture independent model and provides a good programming environment. Theoreticians of the computer science community have proved that it is possible to emulate the theoretical PRAM model using current technology. Solutions have been found for effectively interconnecting processing elements, for routing data on these networks and for distributing the data among memory modules without hotspots. This thesis reviews this emulation and the possibilities it provides for large scale general purpose parallel computation. The emulation employs a bridging model which acts as an interface between the actual hardware and the PRAM model. We review the evidence that such a scheme crn achieve scalable parallel performance and portable parallel software and that PRAM algorithms can be optimally implemented on such practical models. In the course of this review we presented the following new results: 1. Concerning parallel approximation algorithms, we describe an NC algorithm for finding an approximation to a minimum weight perfect matching in a complete weighted graph. The algorithm is conceptually very simple and it is also the first NC-approximation algorithm for the task with a sub-linear performance ratio. 2. Concerning graph embedding, we describe dense edge-disjoint embeddings of the complete binary tree with n leaves in the following n-node communication networks: the hypercube, the de Bruijn and shuffle-exchange networks and the 2-dimcnsional mesh. In the embeddings the maximum distance from a leaf to the root of the tree is asymptotically optimally short. The embeddings facilitate efficient implementation of many PRAM algorithms on networks employing these graphs as interconnection networks. 3. Concerning bulk synchronous algorithmics, we describe scalable transportable algorithms for the following three commonly required types of computation; balanced tree computations. Fast Fourier Transforms and matrix multiplications

    GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding

    Full text link
    Learning continuous representations of nodes is attracting growing interest in both academia and industry recently, due to their simplicity and effectiveness in a variety of applications. Most of existing node embedding algorithms and systems are capable of processing networks with hundreds of thousands or a few millions of nodes. However, how to scale them to networks that have tens of millions or even hundreds of millions of nodes remains a challenging problem. In this paper, we propose GraphVite, a high-performance CPU-GPU hybrid system for training node embeddings, by co-optimizing the algorithm and the system. On the CPU end, augmented edge samples are parallelly generated by random walks in an online fashion on the network, and serve as the training data. On the GPU end, a novel parallel negative sampling is proposed to leverage multiple GPUs to train node embeddings simultaneously, without much data transfer and synchronization. Moreover, an efficient collaboration strategy is proposed to further reduce the synchronization cost between CPUs and GPUs. Experiments on multiple real-world networks show that GraphVite is super efficient. It takes only about one minute for a network with 1 million nodes and 5 million edges on a single machine with 4 GPUs, and takes around 20 hours for a network with 66 million nodes and 1.8 billion edges. Compared to the current fastest system, GraphVite is about 50 times faster without any sacrifice on performance.Comment: accepted at WWW 201
    • …
    corecore