17,282 research outputs found

    A pencil distributed finite difference code for strongly turbulent wall-bounded flows

    Get PDF
    We present a numerical scheme geared for high performance computation of wall-bounded turbulent flows. The number of all-to-all communications is decreased to only six instances by using a two-dimensional (pencil) domain decomposition and utilizing the favourable scaling of the CFL time-step constraint as compared to the diffusive time-step constraint. As the CFL condition is more restrictive at high driving, implicit time integration of the viscous terms in the wall-parallel directions is no longer required. This avoids the communication of non-local information to a process for the computation of implicit derivatives in these directions. We explain in detail the numerical scheme used for the integration of the equations, and the underlying parallelization. The code is shown to have very good strong and weak scaling to at least 64K cores

    Shape evolution of electrodeposited bumps into deep cavities

    Get PDF
    Metal posts and finer pitch solder bumps are the indispensable microconnectors for chip size packaging and are formed by electrodeposition into deep cavities. It is difficult to stir inside these deep cavities. Natural convection due to density difference is effective in stirring inside cavity with 200 mum cathode width of aspect ratio of one. The bump shape increases toward lower side in a vertical cathode arrangement with placement angle of Theta = 90 degrees. This increase in bump height results from a collision of flow along the lower side of the resist sidewall which enlarges local current and thickens the lower edge of bumps. The effect of natural convection is also evident in the neighboring two cavities of 200 mum cathode width. The natural convection is not effective for cavities with less than 100 mum cathode width. The bump shapes become flat. Only diffusion occurs within these smaller than 100 mum cavities. (C) 2001 The Electrochemical Society. All rights reserved.</p

    Accuracy, Scalability, and Efficiency of Mixed-Element USM3D for Benchmark Three-Dimensional Flows

    Get PDF
    The unstructured, mixed-element, cell-centered, finite-volume flow solver USM3D is enhanced with new capabilities including parallelization, line generation for general unstructured grids, improved discretization scheme, and optimized iterative solver. The paper reports on the new developments to the flow solver and assesses the accuracy, scalability, and efficiency. The USM3D assessments are conducted using a baseline method and the recent hierarchical adaptive nonlinear iteration method framework. Two benchmark turbulent flows, namely, a subsonic separated flow around a three-dimensional hemisphere-cylinder configuration and a transonic flow around the ONERA M6 wing are considered

    The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications

    Get PDF
    In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified

    Phase field study of the tip operating state of a freely growing dendrite against convection using a novel parallel multigrid approach

    Get PDF
    Alloy dendrite growth during solidification with coupled thermal-solute-convection fields has been studied by phase field modeling and simulation. The coupled transport equations were solved using a novel parallel-multigrid numerical approach with high computational efficiency that has enabled the investigation of dendrite growth with realistic alloy values of Lewis number ∼104 and Prandtl number ∼10−2. The detailed dendrite tip shape and character were compared with widely recognized analytical approaches to show validity, and shown to be highly dependent on undercooling, solute concentration and Lewis number. In a relatively low flow velocity regime, variations in the ratio of growth selection parameter with and without convection agreed well with theory
    • …
    corecore