28,820 research outputs found

    The Parallelism Motifs of Genomic Data Analysis

    Get PDF
    Genomic data sets are growing dramatically as the cost of sequencing continues to decline and small sequencing devices become available. Enormous community databases store and share this data with the research community, but some of these genomic data analysis problems require large scale computational platforms to meet both the memory and computational requirements. These applications differ from scientific simulations that dominate the workload on high end parallel systems today and place different requirements on programming support, software libraries, and parallel architectural design. For example, they involve irregular communication patterns such as asynchronous updates to shared data structures. We consider several problems in high performance genomics analysis, including alignment, profiling, clustering, and assembly for both single genomes and metagenomes. We identify some of the common computational patterns or motifs that help inform parallelization strategies and compare our motifs to some of the established lists, arguing that at least two key patterns, sorting and hashing, are missing

    Regulatory motif discovery using a population clustering evolutionary algorithm

    Get PDF
    This paper describes a novel evolutionary algorithm for regulatory motif discovery in DNA promoter sequences. The algorithm uses data clustering to logically distribute the evolving population across the search space. Mating then takes place within local regions of the population, promoting overall solution diversity and encouraging discovery of multiple solutions. Experiments using synthetic data sets have demonstrated the algorithm's capacity to find position frequency matrix models of known regulatory motifs in relatively long promoter sequences. These experiments have also shown the algorithm's ability to maintain diversity during search and discover multiple motifs within a single population. The utility of the algorithm for discovering motifs in real biological data is demonstrated by its ability to find meaningful motifs within muscle-specific regulatory sequences

    An Overview of the Use of Neural Networks for Data Mining Tasks

    Get PDF
    In the recent years the area of data mining has experienced a considerable demand for technologies that extract knowledge from large and complex data sources. There is a substantial commercial interest as well as research investigations in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from datasets. Artificial Neural Networks (NN) are popular biologically inspired intelligent methodologies, whose classification, prediction and pattern recognition capabilities have been utilised successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks

    Enumerating Maximal Bicliques from a Large Graph using MapReduce

    Get PDF
    We consider the enumeration of maximal bipartite cliques (bicliques) from a large graph, a task central to many practical data mining problems in social network analysis and bioinformatics. We present novel parallel algorithms for the MapReduce platform, and an experimental evaluation using Hadoop MapReduce. Our algorithm is based on clustering the input graph into smaller sized subgraphs, followed by processing different subgraphs in parallel. Our algorithm uses two ideas that enable it to scale to large graphs: (1) the redundancy in work between different subgraph explorations is minimized through a careful pruning of the search space, and (2) the load on different reducers is balanced through the use of an appropriate total order among the vertices. Our evaluation shows that the algorithm scales to large graphs with millions of edges and tens of mil- lions of maximal bicliques. To our knowledge, this is the first work on maximal biclique enumeration for graphs of this scale.Comment: A preliminary version of the paper was accepted at the Proceedings of the 3rd IEEE International Congress on Big Data 201
    corecore