128,028 research outputs found

    Parallel behavior composition for manufacturing

    Get PDF
    A key problem in the manufacture of highlycustomized products is the synthesis of controllers able to manufacture any instance of a given product type on a given production or assembly line. In this paper, we extend classical AI behavior composition to manufacturing settings. We first introduce a novel solution concept for manufacturing composition, target production processes, that are able to manufacture multiple instances of a product simultaneously in a given production plant. We then propose a technique for synthesizing the largest target production process, together with an associated controller for the machines in the plant

    Mechanical Behavior and Failure Analysis of Prosthetic Retaining Screws after Long‐Term Use In Vivo. Part 2: Metallurgical and Microhardness Analysis

    Get PDF
    Abstract Purpose: This study involved testing and analyzing multiple retrieved prosthetic retaining screws after long‐term use in vivo to: (1) detect manufacturing defects that could affect in‐service behavior; (2) characterize the microstructure and alloy composition; and (3) further characterize the wear mechanism of the screw threads. Materials and Methods: Two new (control) screws from Nobel Biocare (NB) and 18 used (in service 18–120 months) retaining screws [12 from NB and 6 from Sterngold (SG)] were: (1) metallographically examined by light microscopy and scanning electron microscopy (SEM) to determine the microstructure; (2) analyzed by energy dispersive X‐ray (EDX) microanalysis to determine the qualitative and semiquantitative average alloy and individual phase compositions; and (3) tested for Vickers microhardness. Results: Examination of polished longitudinal sections of the screws using light microscopy revealed a significant defect in only one Group 4 screw. No significant defects in any other screws were observed. The defect was considered a “seam” originating as a “hot tear” during original casting solidification of the alloy. Additionally, the examination of longitudinal sections of the screws revealed a uniform homogeneous microstructure in some groups, while in other groups the sections exhibited rows of second phase particles. The screws for some groups demonstrated severe deformation of the lower threads and the bottom part of the screw leading to the formation of crevices and grooves. Some NB screws were comprised of Au‐based alloy with Pt, Cu, and Ag as alloy elements, while others (Groups 4 and 19) were Pd‐based with Ga, Cu, and Au alloy elements. The microstructure was homogeneous with fine or equiaxed grains for all groups except Group 4, which appeared inhomogeneous with anomalous grains. SG screws demonstrated a typical dendritic structure and were Au‐based alloy with Cu and Ag alloy elements. There were differences in the microhardness of gold alloy screws from NB and SG as well as palladium alloy screws from NB. Conclusions: Significant differences within NB retaining screws and between NB and SG screws were found for microstructure, major alloy constituents, and microhardness

    From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering

    Get PDF
    In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS) is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observe

    Analysis of the fracture criticality of biphasic brass

    Get PDF
    Some hydraulic brass components were subjected to in service structural failures. In the present work some case histories were analyzed and revealed that such failures were determined by the material microstructural characteristics dependent not only on the alloy composition, but also on the adopted production techniques. The study highlighted that the β phase orientation significantly affects the fracture behavior of the studied biphasic brass. Moreover the effect of different applied stresses that caused component failure was analyzed

    Fiber association and network formation in PLA/lignocellulosic fiber composites.

    Get PDF
    PLA composites were prepared in an internal mixer with a lignocellulosic fiber having relatively large aspect ratio. Fiber content changed between 0 and 60 vol% and the homogenized material was compression molded to 1 mm thick plates. The composites showed anomalous behavior above certain fiber content. Their modulus and especially their strength decreased drastically and modeling also proved the loss of reinforcement at large fiber contents. Micromechanical testing showed that the mechanism of deformation and failure changes at a critical fiber content. Microscopic analysis indi-cated the formation of a network purely from geometrical reasons. The inherent strength of the network is very small because of the weak forces acting among the fibers. This weak inherent strength makes the structure of the composites very sensitive to pro-cessing conditions, and decreases strength, reproducibility as well as reliability

    Emerging technologies for the non-invasive characterization of physical-mechanical properties of tablets

    Get PDF
    The density, porosity, breaking force, viscoelastic properties, and the presence or absence of any structural defects or irregularities are important physical-mechanical quality attributes of popular solid dosage forms like tablets. The irregularities associated with these attributes may influence the drug product functionality. Thus, an accurate and efficient characterization of these properties is critical for successful development and manufacturing of a robust tablets. These properties are mainly analyzed and monitored with traditional pharmacopeial and non-pharmacopeial methods. Such methods are associated with several challenges such as lack of spatial resolution, efficiency, or sample-sparing attributes. Recent advances in technology, design, instrumentation, and software have led to the emergence of newer techniques for non-invasive characterization of physical-mechanical properties of tablets. These techniques include near infrared spectroscopy, Raman spectroscopy, X-ray microtomography, nuclear magnetic resonance (NMR) imaging, terahertz pulsed imaging, laser-induced breakdown spectroscopy, and various acoustic- and thermal-based techniques. Such state-of-the-art techniques are currently applied at various stages of development and manufacturing of tablets at industrial scale. Each technique has specific advantages or challenges with respect to operational efficiency and cost, compared to traditional analytical methods. Currently, most of these techniques are used as secondary analytical tools to support the traditional methods in characterizing or monitoring tablet quality attributes. Therefore, further development in the instrumentation and software, and studies on the applications are necessary for their adoption in routine analysis and monitoring of tablet physical-mechanical properties
    corecore