80 research outputs found

    Conservative Reversible Elementary Cellular Automata and their Quantum Computations

    Get PDF

    New Cryptographic Algorithms for Enhancing Security of Voice Data

    Get PDF
    A real-time application Voice over Internet Protocol (VoIP) is the technology that enables voice packets transmission over internet protocol (IP). Security is of concern whenever open networks are to be used. In general, the real-time applications suffer from packet latency and loss due to the nature of IP network. Cryptographic systems may be used to achieve VoIP security, but their impact on the Quality of Services (QoS) should be minimized. Most of the known encryption algorithms are computationally expensive resulting in a significant amount of time added to packet delay. VoIP is usually used by public users resulting in a key exchange problem and a trusted intermediate authority normally takes this responsibility. In this research, VoIP security was enhanced via a proposed cryptographic system. The proposed solution consists of a simple, but strong encryption/decryption algorithm as well as an embedded method to exchange the keys between the users. In this research, a new keys is generated in a random fashion and then used to encrypt each new voice packet to strengthen the security level. Key exchange is carried out by inserting the key with the ciphered voice packet that depends on the table of the key positions at the sender and receiver sides, and the target receiver is the only one who is able to extract the key. The encryption process in this research is divided into three main stages: key generation, encryption process, and key insertion process. The decryption process on the other hand is divided into two main stages: key extraction process, and decryption process. The proposed solution was implemented and tested and the results showed that the required time for the security processes is minimized compared to some known algorithms such as AES_Rijndael algorithm. Furthermore, the analysis has proved that the security level has a direct relationship to the key length and the voice packet size in that large packet size requires more processing time. Finally, the implementation result in this research shows the average time needed to encrypt and decrypt a voice packet size using a proposed algorithm with the long key of 1024-bits is much smaller than AES_Rijndael algorithm with a short key length of 128-bits

    A novel symmetric image cryptosystem resistant to noise perturbation based on S8 elliptic curve S-boxes and chaotic maps

    Get PDF
    The recent decade has seen a tremendous escalation of multimedia and its applications. These modern applications demand diverse security requirements and innovative security platforms. In this manuscript, we proposed an algorithm for image encryption applications. The core structure of this algorithm relies on confusion and diffusion operations. The confusion is mainly done through the application of the elliptic curve and S8 symmetric group. The proposed work incorporates three distinct chaotic maps. A detailed investigation is presented to analyze the behavior of chaos for secure communication. The chaotic sequences are then accordingly applied to the proposed algorithm. The modular approach followed in the design framework and integration of chaotic maps into the system makes the algorithm viable for a variety of image encryption applications. The resiliency of the algorithm can further be enhanced by increasing the number of rounds and S-boxes deployed. The statistical findings and simulation results imply that the algorithm is resistant to various attacks. Moreover, the algorithm satisfies all major performance and quality metrics. The encryption scheme can also resist channel noise as well as noise-induced by a malicious user. The decryption is successfully done for noisy data with minor distortions. The overall results determine that the proposed algorithm contains good cryptographic properties and low computational complexity makes it viable to low profile applications
    • …
    corecore