67,067 research outputs found

    When the Cut Condition is Enough: A Complete Characterization for Multiflow Problems in Series-Parallel Networks

    Full text link
    Let G=(V,E)G=(V,E) be a supply graph and H=(V,F)H=(V,F) a demand graph defined on the same set of vertices. An assignment of capacities to the edges of GG and demands to the edges of HH is said to satisfy the \emph{cut condition} if for any cut in the graph, the total demand crossing the cut is no more than the total capacity crossing it. The pair (G,H)(G,H) is called \emph{cut-sufficient} if for any assignment of capacities and demands that satisfy the cut condition, there is a multiflow routing the demands defined on HH within the network with capacities defined on GG. We prove a previous conjecture, which states that when the supply graph GG is series-parallel, the pair (G,H)(G,H) is cut-sufficient if and only if (G,H)(G,H) does not contain an \emph{odd spindle} as a minor; that is, if it is impossible to contract edges of GG and delete edges of GG and HH so that GG becomes the complete bipartite graph K2,pK_{2,p}, with p3p\geq 3 odd, and HH is composed of a cycle connecting the pp vertices of degree 2, and an edge connecting the two vertices of degree pp. We further prove that if the instance is \emph{Eulerian} --- that is, the demands and capacities are integers and the total of demands and capacities incident to each vertex is even --- then the multiflow problem has an integral solution. We provide a polynomial-time algorithm to find an integral solution in this case. In order to prove these results, we formulate properties of tight cuts (cuts for which the cut condition inequality is tight) in cut-sufficient pairs. We believe these properties might be useful in extending our results to planar graphs.Comment: An extended abstract of this paper will be published at the 44th Symposium on Theory of Computing (STOC 2012

    Graph Orientation and Flows Over Time

    Get PDF
    Flows over time are used to model many real-world logistic and routing problems. The networks underlying such problems -- streets, tracks, etc. -- are inherently undirected and directions are only imposed on them to reduce the danger of colliding vehicles and similar problems. Thus the question arises, what influence the orientation of the network has on the network flow over time problem that is being solved on the oriented network. In the literature, this is also referred to as the contraflow or lane reversal problem. We introduce and analyze the price of orientation: How much flow is lost in any orientation of the network if the time horizon remains fixed? We prove that there is always an orientation where we can still send 13\frac{1}{3} of the flow and this bound is tight. For the special case of networks with a single source or sink, this fraction is 12\frac12 which is again tight. We present more results of similar flavor and also show non-approximability results for finding the best orientation for single and multicommodity maximum flows over time

    Smart Procurement Of Naturally Generated Energy (SPONGE) for PHEV's

    Get PDF
    In this paper we propose a new engine management system for hybrid vehicles to enable energy providers and car manufacturers to provide new services. Energy forecasts are used to collaboratively orchestrate the behaviour of engine management systems of a fleet of PHEV's to absorb oncoming energy in an smart manner. Cooperative algorithms are suggested to manage the energy absorption in an optimal manner for a fleet of vehicles, and the mobility simulator SUMO is used to show simple simulations to support the efficacy of the proposed idea.Comment: Updated typos with respect to previous versio

    Robust Multi-Objective Sustainable Reverse Supply Chain Planning: An Application in the Steel Industry

    Get PDF
    In the design of the supply chain, the use of the returned products and their recycling in the production and consumption network is called reverse logistics. The proposed model aims to optimize the flow of materials in the supply chain network (SCN), and determine the amount and location of facilities and the planning of transportation in conditions of demand uncertainty. Thus, maximizing the total profit of operation, minimizing adverse environmental effects, and maximizing customer and supplier service levels have been considered as the main objectives. Accordingly, finding symmetry (balance) among the profit of operation, the environmental effects and customer and supplier service levels is considered in this research. To deal with the uncertainty of the model, scenario-based robust planning is employed alongside a meta-heuristic algorithm (NSGA-II) to solve the model with actual data from a case study of the steel industry in Iran. The results obtained from the model, solving and validating, compared with actual data indicated that the model could optimize the objectives seamlessly and determine the amount and location of the necessary facilities for the steel industry more appropriately.This article belongs to the Special Issue Uncertain Multi-Criteria Optimization Problem
    corecore