4,291 research outputs found

    A Faster Method to Estimate Closeness Centrality Ranking

    Get PDF
    Closeness centrality is one way of measuring how central a node is in the given network. The closeness centrality measure assigns a centrality value to each node based on its accessibility to the whole network. In real life applications, we are mainly interested in ranking nodes based on their centrality values. The classical method to compute the rank of a node first computes the closeness centrality of all nodes and then compares them to get its rank. Its time complexity is O(n⋅m+n)O(n \cdot m + n), where nn represents total number of nodes, and mm represents total number of edges in the network. In the present work, we propose a heuristic method to fast estimate the closeness rank of a node in O(α⋅m)O(\alpha \cdot m) time complexity, where α=3\alpha = 3. We also propose an extended improved method using uniform sampling technique. This method better estimates the rank and it has the time complexity O(α⋅m)O(\alpha \cdot m), where α≈10−100\alpha \approx 10-100. This is an excellent improvement over the classical centrality ranking method. The efficiency of the proposed methods is verified on real world scale-free social networks using absolute and weighted error functions

    A Divide-and-Conquer Algorithm for Betweenness Centrality

    Full text link
    The problem of efficiently computing the betweenness centrality of nodes has been researched extensively. To date, the best known exact and centralized algorithm for this task is an algorithm proposed in 2001 by Brandes. The contribution of our paper is Brandes++, an algorithm for exact efficient computation of betweenness centrality. The crux of our algorithm is that we create a sketch of the graph, that we call the skeleton, by replacing subgraphs with simpler graph structures. Depending on the underlying graph structure, using this skeleton and by keeping appropriate summaries Brandes++ we can achieve significantly low running times in our computations. Extensive experimental evaluation on real life datasets demonstrate the efficacy of our algorithm for different types of graphs. We release our code for benefit of the research community.Comment: Shorter version of this paper appeared in Siam Data Mining 201

    The Physics of Communicability in Complex Networks

    Full text link
    A fundamental problem in the study of complex networks is to provide quantitative measures of correlation and information flow between different parts of a system. To this end, several notions of communicability have been introduced and applied to a wide variety of real-world networks in recent years. Several such communicability functions are reviewed in this paper. It is emphasized that communication and correlation in networks can take place through many more routes than the shortest paths, a fact that may not have been sufficiently appreciated in previously proposed correlation measures. In contrast to these, the communicability measures reviewed in this paper are defined by taking into account all possible routes between two nodes, assigning smaller weights to longer ones. This point of view naturally leads to the definition of communicability in terms of matrix functions, such as the exponential, resolvent, and hyperbolic functions, in which the matrix argument is either the adjacency matrix or the graph Laplacian associated with the network. Considerable insight on communicability can be gained by modeling a network as a system of oscillators and deriving physical interpretations, both classical and quantum-mechanical, of various communicability functions. Applications of communicability measures to the analysis of complex systems are illustrated on a variety of biological, physical and social networks. The last part of the paper is devoted to a review of the notion of locality in complex networks and to computational aspects that by exploiting sparsity can greatly reduce the computational efforts for the calculation of communicability functions for large networks.Comment: Review Article. 90 pages, 14 figures. Contents: Introduction; Communicability in Networks; Physical Analogies; Comparing Communicability Functions; Communicability and the Analysis of Networks; Communicability and Localization in Complex Networks; Computability of Communicability Functions; Conclusions and Prespective

    Updating and downdating techniques for optimizing network communicability

    Get PDF
    The total communicability of a network (or graph) is defined as the sum of the entries in the exponential of the adjacency matrix of the network, possibly normalized by the number of nodes. This quantity offers a good measure of how easily information spreads across the network, and can be useful in the design of networks having certain desirable properties. The total communicability can be computed quickly even for large networks using techniques based on the Lanczos algorithm. In this work we introduce some heuristics that can be used to add, delete, or rewire a limited number of edges in a given sparse network so that the modified network has a large total communicability. To this end, we introduce new edge centrality measures which can be used to guide in the selection of edges to be added or removed. Moreover, we show experimentally that the total communicability provides an effective and easily computable measure of how "well-connected" a sparse network is.Comment: 20 pages, 9 pages Supplementary Materia

    Fast Computing Betweenness Centrality with Virtual Nodes on Large Sparse Networks

    Get PDF
    Betweenness centrality is an essential index for analysis of complex networks. However, the calculation of betweenness centrality is quite time-consuming and the fastest known algorithm uses time and space for weighted networks, where and are the number of nodes and edges in the network, respectively. By inserting virtual nodes into the weighted edges and transforming the shortest path problem into a breadth-first search (BFS) problem, we propose an algorithm that can compute the betweenness centrality in time for integer-weighted networks, where is the average weight of edges and is the average degree in the network. Considerable time can be saved with the proposed algorithm when , indicating that it is suitable for lightly weighted large sparse networks. A similar concept of virtual node transformation can be used to calculate other shortest path based indices such as closeness centrality, graph centrality, stress centrality, and so on. Numerical simulations on various randomly generated networks reveal that it is feasible to use the proposed algorithm in large network analysis
    • …
    corecore