200 research outputs found

    A survey on algorithmic aspects of modular decomposition

    Full text link
    The modular decomposition is a technique that applies but is not restricted to graphs. The notion of module naturally appears in the proofs of many graph theoretical theorems. Computing the modular decomposition tree is an important preprocessing step to solve a large number of combinatorial optimization problems. Since the first polynomial time algorithm in the early 70's, the algorithmic of the modular decomposition has known an important development. This paper survey the ideas and techniques that arose from this line of research

    Rainbow domination and related problems on some classes of perfect graphs

    Full text link
    Let kNk \in \mathbb{N} and let GG be a graph. A function f:V(G)2[k]f: V(G) \rightarrow 2^{[k]} is a rainbow function if, for every vertex xx with f(x)=f(x)=\emptyset, f(N(x))=[k]f(N(x)) =[k]. The rainbow domination number γkr(G)\gamma_{kr}(G) is the minimum of xV(G)f(x)\sum_{x \in V(G)} |f(x)| over all rainbow functions. We investigate the rainbow domination problem for some classes of perfect graphs

    On retracts, absolute retracts, and folds in cographs

    Full text link
    Let G and H be two cographs. We show that the problem to determine whether H is a retract of G is NP-complete. We show that this problem is fixed-parameter tractable when parameterized by the size of H. When restricted to the class of threshold graphs or to the class of trivially perfect graphs, the problem becomes tractable in polynomial time. The problem is also soluble when one cograph is given as an induced subgraph of the other. We characterize absolute retracts of cographs.Comment: 15 page

    Algorithmic Aspects of Switch Cographs

    Full text link
    This paper introduces the notion of involution module, the first generalization of the modular decomposition of 2-structure which has a unique linear-sized decomposition tree. We derive an O(n^2) decomposition algorithm and we take advantage of the involution modular decomposition tree to state several algorithmic results. Cographs are the graphs that are totally decomposable w.r.t modular decomposition. In a similar way, we introduce the class of switch cographs, the class of graphs that are totally decomposable w.r.t involution modular decomposition. This class generalizes the class of cographs and is exactly the class of (Bull, Gem, Co-Gem, C_5)-free graphs. We use our new decomposition tool to design three practical algorithms for the maximum cut, vertex cover and vertex separator problems. The complexity of these problems was still unknown for this class of graphs. This paper also improves the complexity of the maximum clique, the maximum independant set, the chromatic number and the maximum clique cover problems by giving efficient algorithms, thanks to the decomposition tree. Eventually, we show that this class of graphs has Clique-Width at most 4 and that a Clique-Width expression can be computed in linear time

    A Fast Parallel Algorithm to Recognize P4-Sparse Graphs

    Get PDF
    A number of problems in mobile computing, group-based collaboration, automated theorem proving, networking, scheduling, and cluster analysis suggested the study of graphs featuring certain “local density” characteristics. Typically, the notion of local density is equated with the absence of chordless paths of length three or more. Recently, a new metric for local density has been proposed, allowing a number of such induced paths to occur. More precisely, a graphG is called P4-sparse if no set of five vertices inG induces more than one chordless path of length three. P4-sparse graphs generalize the well-known class of cographs corresponding to a more stringent local density metric. One remarkable feature of P4-sparse graphs is that they admit a tree representation unique up to isomorphism. In this work we present a parallel algorithm to recognize P4-sparse graphs and show how the data structures returned by the recognition algorithm can be used to construct the corresponding tree representation. With a graphG= (V, E) with¦V¦=n and¦E¦= m as input, our algorithms run inO(log n) time usingO((n2 + mn)/ log n) processors in the EREW-PRAM model
    corecore