291,460 research outputs found

    Accelerating Cosmic Microwave Background map-making procedure through preconditioning

    Get PDF
    Estimation of the sky signal from sequences of time ordered data is one of the key steps in Cosmic Microwave Background (CMB) data analysis, commonly referred to as the map-making problem. Some of the most popular and general methods proposed for this problem involve solving generalised least squares (GLS) equations with non-diagonal noise weights given by a block-diagonal matrix with Toeplitz blocks. In this work we study new map-making solvers potentially suitable for applications to the largest anticipated data sets. They are based on iterative conjugate gradient (CG) approaches enhanced with novel, parallel, two-level preconditioners. We apply the proposed solvers to examples of simulated non-polarised and polarised CMB observations, and a set of idealised scanning strategies with sky coverage ranging from nearly a full sky down to small sky patches. We discuss in detail their implementation for massively parallel computational platforms and their performance for a broad range of parameters characterising the simulated data sets. We find that our best new solver can outperform carefully-optimised standard solvers used today by a factor of as much as 5 in terms of the convergence rate and a factor of up to 44 in terms of the time to solution, and to do so without significantly increasing the memory consumption and the volume of inter-processor communication. The performance of the new algorithms is also found to be more stable and robust, and less dependent on specific characteristics of the analysed data set. We therefore conclude that the proposed approaches are well suited to address successfully challenges posed by new and forthcoming CMB data sets.Comment: 19 pages // Final version submitted to A&

    Accelerating Cosmic Microwave Background map-making procedure through preconditioning

    Get PDF
    Estimation of the sky signal from sequences of time ordered data is one of the key steps in Cosmic Microwave Background (CMB) data analysis, commonly referred to as the map-making problem. Some of the most popular and general methods proposed for this problem involve solving generalised least squares (GLS) equations with non-diagonal noise weights given by a block-diagonal matrix with Toeplitz blocks. In this work we study new map-making solvers potentially suitable for applications to the largest anticipated data sets. They are based on iterative conjugate gradient (CG) approaches enhanced with novel, parallel, two-level preconditioners. We apply the proposed solvers to examples of simulated non-polarised and polarised CMB observations, and a set of idealised scanning strategies with sky coverage ranging from nearly a full sky down to small sky patches. We discuss in detail their implementation for massively parallel computational platforms and their performance for a broad range of parameters characterising the simulated data sets. We find that our best new solver can outperform carefully-optimised standard solvers used today by a factor of as much as 5 in terms of the convergence rate and a factor of up to 44 in terms of the time to solution, and to do so without significantly increasing the memory consumption and the volume of inter-processor communication. The performance of the new algorithms is also found to be more stable and robust, and less dependent on specific characteristics of the analysed data set. We therefore conclude that the proposed approaches are well suited to address successfully challenges posed by new and forthcoming CMB data sets.Comment: 19 pages // Final version submitted to A&

    Recent Advances in Graph Partitioning

    Full text link
    We survey recent trends in practical algorithms for balanced graph partitioning together with applications and future research directions

    A survey on algorithmic aspects of modular decomposition

    Full text link
    The modular decomposition is a technique that applies but is not restricted to graphs. The notion of module naturally appears in the proofs of many graph theoretical theorems. Computing the modular decomposition tree is an important preprocessing step to solve a large number of combinatorial optimization problems. Since the first polynomial time algorithm in the early 70's, the algorithmic of the modular decomposition has known an important development. This paper survey the ideas and techniques that arose from this line of research

    EPiK-a Workflow for Electron Tomography in Kepler.

    Get PDF
    Scientific workflows integrate data and computing interfaces as configurable, semi-automatic graphs to solve a scientific problem. Kepler is such a software system for designing, executing, reusing, evolving, archiving and sharing scientific workflows. Electron tomography (ET) enables high-resolution views of complex cellular structures, such as cytoskeletons, organelles, viruses and chromosomes. Imaging investigations produce large datasets. For instance, in Electron Tomography, the size of a 16 fold image tilt series is about 65 Gigabytes with each projection image including 4096 by 4096 pixels. When we use serial sections or montage technique for large field ET, the dataset will be even larger. For higher resolution images with multiple tilt series, the data size may be in terabyte range. Demands of mass data processing and complex algorithms require the integration of diverse codes into flexible software structures. This paper describes a workflow for Electron Tomography Programs in Kepler (EPiK). This EPiK workflow embeds the tracking process of IMOD, and realizes the main algorithms including filtered backprojection (FBP) from TxBR and iterative reconstruction methods. We have tested the three dimensional (3D) reconstruction process using EPiK on ET data. EPiK can be a potential toolkit for biology researchers with the advantage of logical viewing, easy handling, convenient sharing and future extensibility

    Tree-based Coarsening and Partitioning of Complex Networks

    Full text link
    Many applications produce massive complex networks whose analysis would benefit from parallel processing. Parallel algorithms, in turn, often require a suitable network partition. For solving optimization tasks such as graph partitioning on large networks, multilevel methods are preferred in practice. Yet, complex networks pose challenges to established multilevel algorithms, in particular to their coarsening phase. One way to specify a (recursive) coarsening of a graph is to rate its edges and then contract the edges as prioritized by the rating. In this paper we (i) define weights for the edges of a network that express the edges' importance for connectivity, (ii) compute a minimum weight spanning tree TmT^m with respect to these weights, and (iii) rate the network edges based on the conductance values of TmT^m's fundamental cuts. To this end, we also (iv) develop the first optimal linear-time algorithm to compute the conductance values of \emph{all} fundamental cuts of a given spanning tree. We integrate the new edge rating into a leading multilevel graph partitioner and equip the latter with a new greedy postprocessing for optimizing the maximum communication volume (MCV). Experiments on bipartitioning frequently used benchmark networks show that the postprocessing already reduces MCV by 11.3%. Our new edge rating further reduces MCV by 10.3% compared to the previously best rating with the postprocessing in place for both ratings. In total, with a modest increase in running time, our new approach reduces the MCV of complex network partitions by 20.4%
    • …
    corecore