7,459 research outputs found

    Self-Supervised Shape and Appearance Modeling via Neural Differentiable Graphics

    Get PDF
    Inferring 3D shape and appearance from natural images is a fundamental challenge in computer vision. Despite recent progress using deep learning methods, a key limitation is the availability of annotated training data, as acquisition is often very challenging and expensive, especially at a large scale. This thesis proposes to incorporate physical priors into neural networks that allow for self-supervised learning. As a result, easy-to-access unlabeled data can be used for model training. In particular, novel algorithms in the context of 3D reconstruction and texture/material synthesis are introduced, where only image data is available as supervisory signal. First, a method that learns to reason about 3D shape and appearance solely from unstructured 2D images, achieved via differentiable rendering in an adversarial fashion, is proposed. As shown next, learning from videos significantly improves 3D reconstruction quality. To this end, a novel ray-conditioned warp embedding is proposed that aggregates pixel-wise features from multiple source images. Addressing the challenging task of disentangling shape and appearance, first a method that enables 3D texture synthesis independent of shape or resolution is presented. For this purpose, 3D noise fields of different scales are transformed into stationary textures. The method is able to produce 3D textures, despite only requiring 2D textures for training. Lastly, the surface characteristics of textures under different illumination conditions are modeled in the form of material parameters. Therefore, a self-supervised approach is proposed that has no access to material parameters but only flash images. Similar to the previous method, random noise fields are reshaped to material parameters, which are conditioned to replicate the visual appearance of the input under matching light

    Information embedding and retrieval in 3D printed objects

    Get PDF
    Deep learning and convolutional neural networks have become the main tools of computer vision. These techniques are good at using supervised learning to learn complex representations from data. In particular, under limited settings, the image recognition model now performs better than the human baseline. However, computer vision science aims to build machines that can see. It requires the model to be able to extract more valuable information from images and videos than recognition. Generally, it is much more challenging to apply these deep learning models from recognition to other problems in computer vision. This thesis presents end-to-end deep learning architectures for a new computer vision field: watermark retrieval from 3D printed objects. As it is a new area, there is no state-of-the-art on many challenging benchmarks. Hence, we first define the problems and introduce the traditional approach, Local Binary Pattern method, to set our baseline for further study. Our neural networks seem useful but straightfor- ward, which outperform traditional approaches. What is more, these networks have good generalization. However, because our research field is new, the problems we face are not only various unpredictable parameters but also limited and low-quality training data. To address this, we make two observations: (i) we do not need to learn everything from scratch, we know a lot about the image segmentation area, and (ii) we cannot know everything from data, our models should be aware what key features they should learn. This thesis explores these ideas and even explore more. We show how to use end-to-end deep learning models to learn to retrieve watermark bumps and tackle covariates from a few training images data. Secondly, we introduce ideas from synthetic image data and domain randomization to augment training data and understand various covariates that may affect retrieve real-world 3D watermark bumps. We also show how the illumination in synthetic images data to effect and even improve retrieval accuracy for real-world recognization applications

    Artificial Intelligence Based Classification for Urban Surface Water Modelling

    Get PDF
    Estimations and predictions of surface water runoff can provide very useful insights, regarding flood risks in urban areas. To automatically predict the flow behaviour of the rainfall-runoff water, in real-world satellite images, it is important to precisely identify permeable and impermeable areas. This identification indicates and helps to calculate the amount of surface water, by taking into account the amount of water being absorbed in a permeable area and what remains on the impermeable area. In this research, a model of surface water has been established, to predict the behavioural flow of rainfall-runoff water. This study employs a combination of image processing, artificial intelligence and machine learning techniques, for automatic segmentation and classification of permeable and impermeable areas, in satellite images. These techniques investigate the image classification approaches for classifying three land-use categories (roofs, roads, and pervious areas), commonly found in satellite images of the earth’s surface. Three different classification scenarios are investigated, to select the best classification model. The first scenario involves pixel by pixel classification of images, using Classification Tree and Random Forest classification techniques, in 2 different settings of sequential and parallel execution of algorithms. In the second classification scenario, the image is divided into objects, by using Superpixels (SLIC) segmentation method, while three kinds of feature sets are extracted from the segmented objects. The performance of eight different supervised machine learning classifiers is probed, using 5-fold cross-validation, for multiple SLIC values, while detailed performance comparisons lead to conclusions about the classification into different classes, regarding Object-based and Pixel-based classification schemes. Pareto analysis and Knee point selection are used to select SLIC value and the suitable type of classification, among the aforementioned two. Furthermore, a new diversity and weighted sum-based ensemble classification model, called ParetoEnsemble, is proposed, in this classification scenario. The weights are applied to selected component classifiers of an ensemble, creating a strong classifier, where classification is done based on multiple votes from candidate classifiers of the ensemble, as opposed to individual classifiers, where classification is done based on a single vote, from only one classifier. Unbalanced and balanced data-based classification results are also evaluated, to determine the most suitable mode, for satellite image classifications, in this study. Convolutional Neural Networks, based on semantic segmentation, are also employed in the classification phase, as a third scenario, to evaluate the strength of deep learning model SegNet, in the classification of satellite imaging. The best results, from the three classification scenarios, are compared and the best classification method, among the three scenarios, is used in the next phase of water modelling, with the InfoWorks ICM software, to explore the potential of modelling process, regarding a partially automated surface water network. By using the parameter settings, with a specified amount of simulated rain falling, onto the imaged area, the amount of surface water flow is estimated, to get predictions about runoff situations in urban areas, since runoff, in such a situation, can be high enough to pose a dangerous flood risk. The area of Feock, in Cornwall, is used as a simulation area of study, in this research, where some promising results have been derived, regarding classification and modelling of runoff. The correlation coefficient estimation, between classification and runoff accuracy, provides useful insight, regarding the dependence of runoff performance on classification performance. The trained system was tested on some unknown area images as well, demonstrating a reasonable performance, considering the training and classification limitations and conditions. Furthermore, in these unknown area images, reasonable estimations were derived, regarding surface water runoff. An analysis of unbalanced and balanced data-based classification and runoff estimations, for multiple parameter configurations, provides aid to the selection of classification and modelling parameter values, to be used in future unknown data predictions. This research is founded on the incorporation of satellite imaging into water modelling, using selective images for analysis and assessment of results. This system can be further improved, and runoff predictions of high precision can be better achieved, by adding more high-resolution images to the classifiers training. The added variety, to the trained model, can lead to an even better classification of any unknown image, which could eventually provide better modelling and better insights into surface water modelling. Moreover, the modelling phase can be extended, in future research, to deal with real-time parameters, by calibrating the model, after the classification phase, in order to observe the impact of classification on the actual calibration

    Deep Learning Concepts for Evolutionary Art

    Get PDF
    A deep convolutional neural network (CNN) trained on millions of images forms a very high-level abstract overview of any given target image. Our primary goal is to use this high-level content information of a given target image to guide the automatic evolution of images. We use genetic programming (GP) to evolve procedural textures. We incorporate a pre-trained deep CNN model into the fitness. We are not performing any training, but rather, we pass a target image through the pre-trained deep CNN and use its the high-level representation as the fitness guide for evolved images. We develop a preprocessing strategy called Mean Minimum Matrix Strategy (MMMS) which reduces the dimensions and identifies the most relevant high-level activation maps. The technique using reduced activation matrices for a fitness shows promising results. GP is able to guide the evolution of textures such that they have shared characteristics with the target image. We also experiment with the fully connected “classifier” layers of the deep CNN. The evolved images are able to achieve high confidence scores from the deep CNN module for some tested target images. Finally, we implement our own shallow convolutional neural network with a fixed set of filters. Experiments show that the basic CNN had limited effectiveness, likely due to the lack of training. In conclusion, the research shows the potential for using deep learning concepts in evolutionary art. As deep CNN models become better understood, they will be able to be used more effectively for evolutionary art

    Synthesising 3D solid models of natural heterogeneous materials from single sample image, using encoding deep convolutional generative adversarial networks

    Get PDF
    Three-dimensional solid computational representations of natural heterogeneous materials are challenging to generate due to their high degree of randomness and varying scales of patterns, such as veins and cracks, in different sizes and directions. In this regard, this paper introduces a new architecture to synthesise 3D solid material models by using encoding deep convolutional generative adversarial networks (EDCGANs). DCGANs have been useful in generative tasks in relation to image processing by successfully recreating similar results based on adequate training. While concentrating on natural heterogeneous materials, this paper uses an encoding and a decoding DCGAN combined in a similar way to auto-encoders to convert a given image into marble, based on patches. Additionally, the method creates an input dataset from a single 2D high-resolution exemplar. Further, it translates of 2D data, used as a seed, into 3D data to create material blocks. While the results on the Z-axis do not have size restrictions, the X- and Y-axis are constrained by the given image. Using the method, the paper explores possible ways to present 3D solid textures. The modelling potentials of the developed approach as a design tool is explored to synthesise a 3D solid texture of leaf-like material from an exemplar of a leaf image

    Neural network studies of lithofacies classification

    Get PDF
    corecore