239 research outputs found

    Simulation of flows with violent free surface motion and moving objects using unstructured grids

    Get PDF
    This is the peer reviewed version of the following article: [Löhner, R. , Yang, C. and Oñate, E. (2007), Simulation of flows with violent free surface motion and moving objects using unstructured grids. Int. J. Numer. Meth. Fluids, 53: 1315-1338. doi:10.1002/fld.1244], which has been published in final form at https://doi.org/10.1002/fld.1244. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.A volume of fluid (VOF) technique has been developed and coupled with an incompressible Euler/Navier–Stokes solver operating on adaptive, unstructured grids to simulate the interactions of extreme waves and three-dimensional structures. The present implementation follows the classic VOF implementation for the liquid–gas system, considering only the liquid phase. Extrapolation algorithms are used to obtain velocities and pressure in the gas region near the free surface. The VOF technique is validated against the classic dam-break problem, as well as series of 2D sloshing experiments and results from SPH calculations. These and a series of other examples demonstrate that the ability of the present approach to simulate violent free surface flows with strong nonlinear behaviour.Peer ReviewedPostprint (author's final draft

    A contribution to the finite element analysis of high-speed compressible flows and aerodynamics shape optimization

    Get PDF
    This work covers a contribution to two most interesting research elds in aerodynamics, the fi nite element analysis of high-speed compressible flows (Part I) and aerodynamic shape optimization (Part II). The fi rst part of this study aims at the development of a new stabilization formulation based on the Finite Increment Calculus (FIC) scheme for the Euler and Navier-Stokes equations in the context of the Galerkin nite element method (FEM). The FIC method is based on expressing the balance of fluxes in a spacetime domain of nite size. It is tried to prevent the creation of instabilities normally presented in the numerical solutions due to the high convective term and sharp gradients. In order to overcome the typical instabilities happening in the numerical solution of the high-speed compressible flows, two stabilization terms, called streamline term and transverse term, are added through the FIC formulation in space-time domain to the original conservative equations of mass, momentum and energy. Generally, the streamline term holding the direction of the velocity is responsible for stabilizing the spurious solutions produced from the convective term while the transverse term smooths the solution in the high gradient zones. An explicit fourth order Runge-Kutta scheme is implemented to advance the solution in time. In order to investigate the capability of the proposed formulation, some numerical test examples corresponding to subsonic, transonic and supersonic regimes for inviscid and viscous flows are presented. The behavior of the proposed stabilization technique in providing appropriate solutions has been studied especially near the zones where the solution has some complexities such as shock waves, boundary layer, stagnation point, etc. Although the derived methodology delivers precise results with a nearly coarse mesh, the mesh refinement technique is coupled in the solution to create a suitable mesh particularly in the high gradient zones. The comparison of the numerical results obtained from the FIC formulation with the reference ones demonstrates the robustness of the proposed method for stabilization of the Euler and Navier-Stokes equations. It is observed that the usual oscillations occur in the Galerkin FEM, especially near the high gradient zones, are cured by implementing the proposed stabilization terms. Furthermore, allowing the adaptation framework to modify the mesh, the quality of the results improves signi cantly. The second part of this thesis proposes a procedure for aerodynamic shape optimization combining Genetic Algorithm (GA) and mesh re nement technique. In particular, it is investigated the e ect of mesh re nement on the computational cost and solution accuracy during the process of aerodynamic shape optimization. Therefore, an adaptive remeshing technique is joined to the CFD solver for the analysis of each design candidate to guarantee the production of more realistic solutions during the optimum design process in the presence of shock waves. In this study, some practical transonic airfoil design problems using adap- tive mesh techniques coupled to Multi-Objective Genetic Algorithms (MOGAs) and Euler flow analyzer are addressed. The methodology is implemented to solve three practical design problems; the fi rst test case considers a reconstruction design optimization that minimizes the pressure error between a prede ned pressure curve and candidate pressure distribution. The second test considers the total drag minimization by designing airfoil shape operating at transonic speeds. For the final test case, a multi-objective design optimization is conducted to maximize both the lift to drag ratio (L/D) and lift coe cient (Cl). The solutions obtained with and without adaptive mesh re nement are compared in terms of solution accuracy and computational cost. These design problems under transonic speeds need to be solved with a ne mesh, particularly near the object, to capture the shock waves that will cost high computational time and require solution accuracy. By comparison of the the numerical results obtained with both optimization problems, the obtainment of direct bene ts in the reduction of the total computational cost through a better convergence to the final solution is evaluated. Indeed, the improvement of the solution quality when an adaptive remeshing technique is coupled with the optimum design strategy can be judged.El presente trabajo pretende contribuir a dos de los campos de investigaci on m as interesantes en la aerodin amica, el an alisis num erico de flujos compresibles a alta velocidad (Parte I) y la optimizaci on de la forma aerodin amica (Parte II). La primera parte de este estudio se centra en la soluci on num erica de las ecuaciones de Navier-Stokes, que modelan el comportamiento de flujos compresibles a alta velocidad. La discretizaci on espacial se lleva a cabo mediante el m etodo de elementos nitos (FEM) y se pone especial enfasis en el desarrollo de una nueva formulaci on estabilizada basada en la t ecnica de c alculo de Incremento fi nitos (FIC). En este ultima, los t erminos de estabilizaci on convectiva se obtienen de manera natural de las ecuaciones de gobierno a trav es de postulados de conservaci on y equilibrio de flujos en un dominio espacio-tiempo de tamaño nito. Ello lleva a la obtenci on de dos t erminos de estabilizaci on que funcionan de manera complementaria. Uno act ua en direcci on de las lineas de corriente proporcionando la estabilizaci on necesaria para contrarestrar las inestabilidades propias de la forma discreta de Galerkin y el otro t ermino, de tipo shock capturing, act ua de manera transversal a las l neas de corriente y permite mejorar la soluci on num erica alrededor de discontinuidades y otro tipos de fen omenos localizados en el campo de soluci on de problema. La forma discreta de las ecuaciones de gobierno se completa mediante un esquema de integraci on temporal expl icito de tipo de Runge-Kutta de 4to orden. El esquema de soluci on b asico propuesto se complementa con una t ecnica de re namiento adaptativo de malla que permite mejorar autom aticamente la soluci on num erica en zonas localizadas del dominio en que, dadas las caracter sticas del flujo, se necesita una mayor resoluci on espacial. Con el prop osito de investigar el comportamiento de la formulaci on num erica se estudian diferentes casos de an alisis que implican flujos viscosos y no viscosos en r egimen subs onico, trans onico y supers onico y se estudia con especial detalle el funcionamiento de la t ecnica de estabilizaci on propuesta. Los resultados obtenidos demuestran una exactitud satisfactoria y una buena correlaci on con resultados presentes en la literatura, incluso cuando se trabaja con discretizaciones espaciales relativamente gruesas. Adicionalmente, los estudios num ericos realizados demuestran que el empleo del esquema adaptativo de malla es e ficaz para incrementar la exactitud de la soluci on numerica manteniendo un bajo coste computacional. En la segunda parte de este estudio se propone un m etodo para la optimizaci on de formas aerodin amicas que combina algoritmos gen eticos multiobjetivo (MOGAs) y remallado adaptativo con el objetivo de asegurar, con un coste computacional m nimo, la calidad de la soluci on numerica empleada en el proceso de b usqueda de un determinado diseño objetivo, particularmente cuando el flujo presenta discontinuidades y gradientes muy localizados, ti picos de flujos a alta velocidad. La metodolog a se aplica a resolver tres problemas pr acticos de diseño de per les aerodin amicos en flujo trans onico que implican la optimizaci on de la distribuci on de presiones, minimizaci on de la resistencia de onda y maximizaci on conjunta de la sustentaci on y la relaci on sustentaci on/resistencia. Para cada uno de ellos se estudia el efecto del re namiento en la calidad de la soluci on num erica as como tambi en en el coste computacional y la convergencia del problema. Los estudios realizados demuestran la e cacia de la metodolog a propuesta

    LES turbulence models. Relation with stabilized numerical methods

    Get PDF
    One of the aims of this text is to show some important results in LES modelling and to identify which are main mathematical problems for the development of a complete theory. A relevant aspect of LES theory, which we will consider in our work, is the close relationship between the mathematical properties of LES models and the numerical methods used for their implementation. In last years it is more and more common the idea in the scientific community, especially in the numerical community, that turbulence models and stabilization techniques play a very similar role. Methodologies used to simulate turbulent flows, RANS or LES approaches, are based on the same concept: unability to simulate a turbulent flow using a finite discretization in time and space. Turbulence models introduce additional information (impossible to be captured by the approximation technique used in the simulation) to obtain physically coherent solutions. On the other side, numerical methods used for the integration of partial differential equations (PDE) need to be modified in order to able to reproduce solutions that present very high localized gradients. These modifications, known as stabilization techniques, make possible to capture these sharp and localized changes of the solution. According with previous paragraphs, the following natural question appears: Is it possible to reinterpret stabilization methods as turbulence models? This question suggests a possible principle of duality between turbulence modelling and numerical stabilization. More than to share certain properties, actually, it is suggested that the numerical stabilization can be understood as turbulence. The opposite will occur if turbulence models are only necessary due to discretization limitations instead of a need for reproducing the physical behaviour of the flow. Finally: can turbulence models be understood as a component of a general stabilization method

    Experimental and numerical analysis of a sphere falling into a viscous fluid

    Get PDF
    The experimental and numerical analysis of spheres falling into viscous flows is considered. The physical model is built using a set of silicone and glass spheres falling into oil and water. The rigid‐body trajectory of the sphere and the free surface evolution are obtained from videos. The numerical results are obtained using two different finite element codes. The first code uses a fractional step approach with adaptive meshes and time‐step sizes whereas the second code uses a monolithic fully coupled fixed‐mesh technique. The results exhibit a good comparison between both numerical techniques and with the experiments

    Large-scale simulation of flows with violent free surface motion

    Get PDF
    A Volume of Fluid (VOF) technique has been developed and coupled with an incompressible Euler/Navier Stokes solver operating on adaptive, unstructured grids to simulate the interactions of extreme waves and three-dimensional structures. The present implementation follows the classic VOF implementation for the liquid-gas system, considering only the liquid phase. Extrapolation algorithms to obtain velocities and pressure in the gas region near the free surface have been implemented. The VOF technique is validated against the classic dam-break problem, as well as series of 2-D sloshing experiments and results from SPH calculations. These and a series of other examples demonstrate that the present CFD method is capable of simulating violent free surface fows with strong nonlinear behaviour.Postprint (published version

    LES turbulence Models: relation with stabilized numerical methods

    Get PDF
    Abstract One of the aims of this text is to show some important results in LES modelling and to identify which are main mathematical problems for the development of a complete theory. A relevant aspect of LES theory, which we will consider in our work, is the close relationship between the mathematical properties of LES models and the numerical methods used for their implementation. In last years it is more and more common the idea in the scientific community, especially in the numerical community, that turbulence models and stabilization techniques play a very similar role. Methodologies used to simulate turbulent flows, RANS or LES approaches, are based on the same concept: unability to simulate a turbulent flow using a finite discretization in time and space. Turbulence models introduce additional information (impossible to be captured by the approximation technique used in the simulation) to obtain physically coherent solutions. On the other side, numerical methods used for the integration of partial differential equations (PDE) need to be modified in order to able to reproduce solutions that present very high localized gradients. These modifications, known as stabilization techniques, make possible to capture these sharp and localized changes of the solution. According with previous paragraphs, the following natural question appears: Is it possible to reinterpret stabilization methods as turbulence models? This question suggests a possible principle of duality between turbulence modelling and numerical stabilization. More than to share certain properties, actually, it is suggested that the numerical stabilization can be understood as turbulence. The opposite will occur if turbulence models are only necessary due to discretization limitations instead of a need for reproducing the physical behaviour of the flow. Finally: can turbulence models be understood as a component of a general stabilization method?Preprin

    LES Turbulence models. Relation with stabilized numerical methods

    Get PDF
    One of the aims of this text is to show some important results in LES modelling and to identify which are main mathematical problems for the development of a complete theory. A relevant aspect of LES theory, which we will consider in our work, is the close relationship between the mathematical properties of LES models and the numerical methods used for their implementation. In last years it is more and more common the idea in the scientific community, especially in the numerical community, that turbulence models and stabilization techniques play a very similar role. Methodologies used to simulate turbulent flows, RANS or LES approaches, are based on the same concept: unability to simulate a turbulent flow using a finite discretization in time and space. Turbulence models introduce additional information (impossible to be captured by the approximation technique used in the simulation) to obtain physically coherent solutions. On the other side, numerical methods used for the integration of partial differential equations (PDE) need to be modified in order to able to reproduce solutions that present very high localized gradients. These modifications, known as stabilization techniques, make possible to capture these sharp and localized changes of the solution. According with previous paragraphs, the following natural question appears: Is it possible to reinterpret stabilization methods as turbulence models? This question suggests a possible principle of duality between turbulence modelling and numerical stabilization. More than to share certain properties, actually, it is suggested that the numerical stabilization can be understood as turbulence. The opposite will occur if turbulence models are only necessary due to discretization limitations instead of a need for reproducing the physical behaviour of the flow. Finally: can turbulence models be understood as a component of a general stabilization method
    • 

    corecore