14 research outputs found

    VLSI architectures design for encoders of High Efficiency Video Coding (HEVC) standard

    Get PDF
    The growing popularity of high resolution video and the continuously increasing demands for high quality video on mobile devices are producing stronger needs for more efficient video encoder. Concerning these desires, HEVC, a newest video coding standard, has been developed by a joint team formed by ISO/IEO MPEG and ITU/T VCEG. Its design goal is to achieve a 50% compression gain over its predecessor H.264 with an equal or even higher perceptual video quality. Motion Estimation (ME) being as one of the most critical module in video coding contributes almost 50%-70% of computational complexity in the video encoder. This high consumption of the computational resources puts a limit on the performance of encoders, especially for full HD or ultra HD videos, in terms of coding speed, bit-rate and video quality. Thus the major part of this work concentrates on the computational complexity reduction and improvement of timing performance of motion estimation algorithms for HEVC standard. First, a new strategy to calculate the SAD (Sum of Absolute Difference) for motion estimation is designed based on the statistics on property of pixel data of video sequences. This statistics demonstrates the size relationship between the sum of two sets of pixels has a determined connection with the distribution of the size relationship between individual pixels from the two sets. Taking the advantage of this observation, only a small proportion of pixels is necessary to be involved in the SAD calculation. Simulations show that the amount of computations required in the full search algorithm is reduced by about 58% on average and up to 70% in the best case. Secondly, from the scope of parallelization an enhanced TZ search for HEVC is proposed using novel schemes of multiple MVPs (motion vector predictor) and shared MVP. Specifically, resorting to multiple MVPs the initial search process is performed in parallel at multiple search centers, and the ME processing engine for PUs within one CU are parallelized based on the MVP sharing scheme on CU (coding unit) level. Moreover, the SAD module for ME engine is also parallelly implemented for PU size of 32ร—32. Experiments indicate it achieves an appreciable improvement on the throughput and coding efficiency of the HEVC video encoder. In addition, the other part of this thesis is contributed to the VLSI architecture design for finding the first W maximum/minimum values targeting towards high speed and low hardware cost. The architecture based on the novel bit-wise AND scheme has only half of the area of the best reference solution and its critical path delay is comparable with other implementations. While the FPCG (full parallel comparison grid) architecture, which utilizes the optimized comparator-based structure, achieves 3.6 times faster on average on the speed and even 5.2 times faster at best comparing with the reference architectures. Finally the architecture using the partial sorting strategy reaches a good balance on the timing performance and area, which has a slightly lower or comparable speed with FPCG architecture and a acceptable hardware cost

    A One-dimensional HEVC video steganalysis method using the Optimality of Predicted Motion Vectors

    Full text link
    Among steganalysis techniques, detection against motion vector (MV) domain-based video steganography in High Efficiency Video Coding (HEVC) standard remains a hot and challenging issue. For the purpose of improving the detection performance, this paper proposes a steganalysis feature based on the optimality of predicted MVs with a dimension of one. Firstly, we point out that the motion vector prediction (MVP) of the prediction unit (PU) encoded using the Advanced Motion Vector Prediction (AMVP) technique satisfies the local optimality in the cover video. Secondly, we analyze that in HEVC video, message embedding either using MVP index or motion vector differences (MVD) may destroy the above optimality of MVP. And then, we define the optimal rate of MVP in HEVC video as a steganalysis feature. Finally, we conduct steganalysis detection experiments on two general datasets for three popular steganography methods and compare the performance with four state-of-the-art steganalysis methods. The experimental results show that the proposed optimal rate of MVP for all cover videos is 100\%, while the optimal rate of MVP for all stego videos is less than 100\%. Therefore, the proposed steganography scheme can accurately distinguish between cover videos and stego videos, and it is efficiently applied to practical scenarios with no model training and low computational complexity.Comment: Submitted to TCSV

    Hardware based High Accuracy Integer Motion Estimation and Merge Mode Estimation

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2017. 8. ์ดํ˜์žฌ.HEVC๋Š” H.264/AVC ๋Œ€๋น„ 2๋ฐฐ์˜ ๋›ฐ์–ด๋‚œ ์••์ถ• ํšจ์œจ์„ ๊ฐ€์ง€์ง€๋งŒ, ๋งŽ์€ ์••์ถ• ๊ธฐ์ˆ ์ด ์‚ฌ์šฉ๋จ์œผ๋กœ์จ, ์ธ์ฝ”๋” ์ธก์˜ ๊ณ„์‚ฐ ๋ณต์žก๋„๋ฅผ ํฌ๊ฒŒ ์ฆ๊ฐ€์‹œ์ผฐ๋‹ค. HEVC์˜ ๋†’์€ ๊ณ„์‚ฐ ๋ณต์žก๋„๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•œ ๋งŽ์€ ์—ฐ๊ตฌ๋“ค์ด ์ด๋ฃจ์–ด์กŒ์ง€๋งŒ, ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๊ตฌ๋“ค์€ H.264/AVC๋ฅผ ์œ„ํ•œ ๊ณ„์‚ฐ ๋ณต์žก๋„ ๊ฐ์†Œ ๋ฐฉ๋ฒ•์„ ํ™•์žฅ ์ ์šฉํ•˜๋Š” ๋ฐ์— ๊ทธ์ณ, ๋งŒ์กฑ์Šค๋Ÿฝ์ง€ ์•Š์€ ๊ณ„์‚ฐ ๋ณต์žก๋„ ๊ฐ์†Œ ์„ฑ๋Šฅ์„ ๋ณด์ด๊ฑฐ๋‚˜, ์ง€๋‚˜์น˜๊ฒŒ ํฐ ์••์ถ• ํšจ์œจ ์†์‹ค์„ ๋™๋ฐ˜ํ•˜์—ฌ HEVC์˜ ์ตœ๋Œ€ ์••์ถ• ์„ฑ๋Šฅ์„ ๋Œ์–ด๋‚ด์ง€ ๋ชปํ–ˆ๋‹ค. ํŠนํžˆ ์•ž์„œ ์—ฐ๊ตฌ๋œ ํ•˜๋“œ์›จ์–ด ๊ธฐ๋ฐ˜์˜ ์ธ์ฝ”๋”๋Š” ์‹ค์‹œ๊ฐ„ ์ธ์ฝ”๋”์˜ ์‹คํ˜„์ด ์šฐ์„ ๋˜์–ด ์••์ถ• ํšจ์œจ์˜ ํฌ์ƒ์ด ๋งค์šฐ ํฌ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ•˜๋“œ์›จ์–ด ๊ธฐ๋ฐ˜ Inter prediction์˜ ๊ณ ์†ํ™”๋ฅผ ์ด๋ฃธ๊ณผ ๋™์‹œ์— HEVC๊ฐ€ ๊ฐ€์ง„ ์••์ถ• ์„ฑ๋Šฅ์˜ ์†์‹ค์„ ์ตœ์†Œํ™”ํ•˜๊ณ , ์‹ค์‹œ๊ฐ„ ์ฝ”๋”ฉ์ด ๊ฐ€๋Šฅํ•œ ํ•˜๋“œ์›จ์–ด ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•œ bottom-up MV ์˜ˆ์ธก ๋ฐฉ๋ฒ•์€ ๊ธฐ์กด์˜ ๊ณต๊ฐ„์ , ์‹œ๊ฐ„์ ์œผ๋กœ ์ธ์ ‘ํ•œ PU๋กœ๋ถ€ํ„ฐ MV๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์•„๋‹Œ, HEVC์˜ ๊ณ„์ธต์ ์œผ๋กœ ์ธ์ ‘ํ•œ PU๋กœ๋ถ€ํ„ฐ MV๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์—ฌ MV ์˜ˆ์ธก์˜ ์ •ํ™•๋„๋ฅผ ํฐ ํญ์œผ๋กœ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์••์ถ• ํšจ์œจ์˜ ๋ณ€ํ™” ์—†์ด IME์˜ ๊ณ„์‚ฐ ๋ณต์žก๋„๋ฅผ 67% ๊ฐ์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ œ์•ˆ๋œ bottom-up IME ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜์—ฌ ์‹ค์‹œ๊ฐ„ ๋™์ž‘์ด ๊ฐ€๋Šฅํ•œ ํ•˜๋“œ์›จ์–ด ๊ธฐ๋ฐ˜์˜ IME๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ธฐ์กด์˜ ํ•˜๋“œ์›จ์–ด ๊ธฐ๋ฐ˜ IME๋Š” ๊ณ ์† IME ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๊ฐ–๋Š” ๋‹จ๊ณ„๋ณ„ ์˜์กด์„ฑ์œผ๋กœ ์ธํ•œ idle cycle์˜ ๋ฐœ์ƒ๊ณผ ์ฐธ์กฐ ๋ฐ์ดํ„ฐ ์ ‘๊ทผ ๋ฌธ์ œ๋กœ ์ธํ•ด, ๊ณ ์† IME ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ฑฐ๋‚˜ ๋˜๋Š” ํ•˜๋“œ์›จ์–ด์— ๋งž๊ฒŒ ๊ณ ์† IME ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ˆ˜์ •ํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์— ์••์ถ• ํšจ์œจ์˜ ์ €ํ•˜๊ฐ€ ์ˆ˜ ํผ์„ผํŠธ ์ด์ƒ์œผ๋กœ ๋งค์šฐ ์ปธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณ ์† IME ์•Œ๊ณ ๋ฆฌ์ฆ˜์ธ TZS ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ฑ„ํƒํ•˜์—ฌ TZS ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ณ„์‚ฐ ๋ณต์žก๋„ ๊ฐ์†Œ ์„ฑ๋Šฅ์„ ํ›ผ์†ํ•˜์ง€ ์•Š๋Š” ํ•˜๋“œ์›จ์–ด ๊ธฐ๋ฐ˜์˜ IME๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ณ ์† IME ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ•˜๋“œ์›จ์–ด์—์„œ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋‹ค์Œ ์„ธ ๊ฐ€์ง€ ์‚ฌํ•ญ์„ ์ œ์•ˆํ•˜๊ณ  ํ•˜๋“œ์›จ์–ด์— ์ ์šฉํ•˜์˜€๋‹ค. ์ฒซ ์งธ๋กœ, ๊ณ ์† IME ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ณ ์งˆ์  ๋ฌธ์ œ์ธ idle cycle ๋ฐœ์ƒ ๋ฌธ์ œ๋ฅผ ์„œ๋กœ ๋‹ค๋ฅธ ์ฐธ์กฐ ํ”ฝ์ณ์™€ ์„œ๋กœ ๋‹ค๋ฅธ depth์— ๋Œ€ํ•œ IME๋ฅผ ์ปจํ…์ŠคํŠธ ์Šค์œ„์นญ์„ ํ†ตํ•ด ํ•ด๊ฒฐํ•˜์˜€๋‹ค. ๋‘˜ ์งธ๋กœ, ์ฐธ์กฐ ๋ฐ์ดํ„ฐ๋กœ์˜ ๋น ๋ฅด๊ณ  ์ž์œ ๋กœ์šด ์ ‘๊ทผ์„ ์œ„ํ•ด ์ฐธ์กฐ ๋ฐ์ดํ„ฐ์˜ locality ์ด์šฉํ•œ multi bank SRAM ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์…‹ ์งธ๋กœ, ์ง€๋‚˜์น˜๊ฒŒ ์ž์œ ๋กœ์šด ์ฐธ์กฐ ๋ฐ์ดํ„ฐ ์ ‘๊ทผ์ด ๋ฐœ์ƒ์‹œํ‚ค๋Š” ๋Œ€๋Ÿ‰์˜ ์Šค์œ„์นญ mux์˜ ์‚ฌ์šฉ์„ ํ”ผํ•˜๊ธฐ ์œ„ํ•ด ํƒ์ƒ‰ ์ค‘์‹ฌ์„ ๊ธฐ์ค€์œผ๋กœ ํ•˜๋Š” ์ œํ•œ๋œ ์ž์œ ๋„์˜ ์ฐธ์กฐ ๋ฐ์ดํ„ฐ ์ ‘๊ทผ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ ์ œ์•ˆ๋œ IME ํ•˜๋“œ์›จ์–ด๋Š” HEVC์˜ ๋ชจ๋“  ๋ธ”๋ก ํฌ๊ธฐ๋ฅผ ์ง€์›ํ•˜๋ฉด์„œ, ์ฐธ์กฐ ํ”ฝ์ฒ˜ 4์žฅ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ, 4k UHD ์˜์ƒ์„ 60fps์˜ ์†๋„๋กœ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ด ๋•Œ ์••์ถ• ํšจ์œจ์˜ ์†์‹ค์€ 0.11%๋กœ ๊ฑฐ์˜ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š๋Š”๋‹ค. ์ด ๋•Œ ์‚ฌ์šฉ๋˜๋Š” ํ•˜๋“œ์›จ์–ด ๋ฆฌ์†Œ์Šค๋Š” 1.27M gates์ด๋‹ค. HEVC์— ์ƒˆ๋กœ์ด ์ฑ„ํƒ๋œ merge mode estimation์€ ์••์ถ• ํšจ์œจ ๊ฐœ์„  ํšจ๊ณผ๊ฐ€ ๋›ฐ์–ด๋‚œ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์ด์ง€๋งŒ, ๋งค PU ๋งˆ๋‹ค ๊ณ„์‚ฐ ๋ณต์žก๋„์˜ ๋ณ€๋™ ํญ์ด ์ปค์„œ ํ•˜๋“œ์›จ์–ด๋กœ ๊ตฌํ˜„๋˜๋Š” ๊ฒฝ์šฐ ํ•˜๋“œ์›จ์–ด ๋ฆฌ์†Œ์Šค์˜ ๋‚ญ๋น„๊ฐ€ ๋งŽ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํšจ์œจ์ ์ธ ํ•˜๋“œ์›จ์–ด ๊ธฐ๋ฐ˜ MME ๋ฐฉ๋ฒ•๊ณผ ํ•˜๋“œ์›จ์–ด ๊ตฌ์กฐ๋ฅผ ํ•จ๊ป˜ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ธฐ์กด MME ๋ฐฉ์‹์€ ์ด์›ƒ PU์— ์˜ํ•ด ๋ณด๊ฐ„ ํ•„ํ„ฐ ์ ์šฉ ์—ฌ๋ถ€๊ฐ€ ๊ฒฐ์ •๋˜๊ธฐ ๋•Œ๋ฌธ์—, ๋ณด๊ฐ„ ํ•„ํ„ฐ์˜ ์‚ฌ์šฉ๋ฅ ์€ 50% ์ดํ•˜๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ํ•˜๋“œ์›จ์–ด๋Š” ๋ณด๊ฐ„ ํ•„ํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ์— ๋งž์ถ”์–ด ์„ค๊ณ„๋˜์–ด์™”๊ธฐ ๋•Œ๋ฌธ์— ํ•˜๋“œ์›จ์–ด ๋ฆฌ์†Œ์Šค์˜ ์‚ฌ์šฉ ํšจ์œจ์ด ๋‚ฎ์•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฐ€์žฅ ํ•˜๋“œ์›จ์–ด ๋ฆฌ์†Œ์Šค๋ฅผ ๋งŽ์ด ์‚ฌ์šฉํ•˜๋Š” ์„ธ๋กœ ๋ฐฉํ–ฅ ๋ณด๊ฐ„ ํ•„ํ„ฐ๋ฅผ ์ ˆ๋ฐ˜ ํฌ๊ธฐ๋กœ ์ค„์ธ ๋‘ ๊ฐœ์˜ ๋ฐ์ดํ„ฐ ํŒจ์Šค๋ฅผ ๊ฐ–๋Š” MME ํ•˜๋“œ์›จ์–ด ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ•˜์˜€๊ณ , ๋†’์€ ํ•˜๋“œ์›จ์–ด ์‚ฌ์šฉ๋ฅ ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ์••์ถ• ํšจ์œจ ์†์‹ค์„ ์ตœ์†Œํ™” ํ•˜๋Š” merge ํ›„๋ณด ํ• ๋‹น ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ, ๊ธฐ์กด ํ•˜๋“œ์›จ์–ด ๊ธฐ๋ฐ˜ MME ๋ณด๋‹ค 24% ์ ์€ ํ•˜๋“œ์›จ์–ด ๋ฆฌ์†Œ์Šค๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด์„œ๋„ 7.4% ๋” ๋น ๋ฅธ ์ˆ˜ํ–‰ ์‹œ๊ฐ„์„ ๊ฐ–๋Š” ์ƒˆ๋กœ์šด ํ•˜๋“œ์›จ์–ด ๊ธฐ๋ฐ˜์˜ MME๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ํ•˜๋“œ์›จ์–ด ๊ธฐ๋ฐ˜์˜ MME๋Š” 460.8K gates์˜ ํ•˜๋“œ์›จ์–ด ๋ฆฌ์†Œ์Šค๋ฅผ ์‚ฌ์šฉํ•˜๊ณ  4k UHD ์˜์ƒ์„ 30 fps์˜ ์†๋„๋กœ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค.์ œ 1 ์žฅ ์„œ ๋ก  1 1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ 1 1.2 ์—ฐ๊ตฌ ๋‚ด์šฉ 3 1.3 ๊ณตํ†ต ์‹คํ—˜ ํ™˜๊ฒฝ 5 1.4 ๋…ผ๋ฌธ ๊ตฌ์„ฑ 6 ์ œ 2 ์žฅ ๊ด€๋ จ ์—ฐ๊ตฌ 7 2.1 HEVC ํ‘œ์ค€ 7 2.1.1 ์ฟผ๋“œ-ํŠธ๋ฆฌ ๊ธฐ๋ฐ˜์˜ ๊ณ„์ธต์  ๋ธ”๋ก ๊ตฌ์กฐ 7 2.1.2 HEVC ์˜ Inter Prediction 9 2.2 ํ™”๋ฉด ๊ฐ„ ์˜ˆ์ธก์˜ ์†๋„ ํ–ฅ์ƒ์„ ์œ„ํ•œ ์ด์ „ ์—ฐ๊ตฌ 17 2.2.1 ๊ณ ์† Integer Motion Estimation ์•Œ๊ณ ๋ฆฌ์ฆ˜ 17 2.2.2 ๊ณ ์† Merge Mode Estimation ์•Œ๊ณ ๋ฆฌ์ฆ˜ 20 2.3 ํ™”๋ฉด ๊ฐ„ ์˜ˆ์ธก ํ•˜๋“œ์›จ์–ด ๊ตฌ์กฐ์— ๋Œ€ํ•œ ์ด์ „ ์—ฐ๊ตฌ 21 2.3.1 ํ•˜๋“œ์›จ์–ด ๊ธฐ๋ฐ˜ Integer Motion Estimation ์—ฐ๊ตฌ 21 2.3.2 ํ•˜๋“œ์›จ์–ด ๊ธฐ๋ฐ˜ Merge Mode Estimation ์—ฐ๊ตฌ 25 ์ œ 3 ์žฅ Bottom-up Integer Motion Estimation 26 3.1 ์„œ๋กœ ๋‹ค๋ฅธ ๊ณ„์ธต ๊ฐ„์˜ Motion Vector ๊ด€๊ณ„ ๊ด€์ฐฐ 26 3.1.1 ์„œ๋กœ ๋‹ค๋ฅธ ๊ณ„์ธต ๊ฐ„์˜ Motion Vector ๊ด€๊ณ„ ๋ถ„์„ 26 3.1.2 Top-down ๋ฐ Bottom-up ๋ฐฉํ–ฅ์˜ Motion Vector ๊ด€๊ณ„ ๋ถ„์„ 30 3.2 Bottom-up Motion Vector Prediction 33 3.3 Bottom-up Integer Motion Estimation 37 3.3.1 Bottom-up Integer Motion Estimation - Single MVP 37 3.3.2 Bottom-up Integer Motion Estimation - Multiple MVP 38 3.4 ์‹คํ—˜ ๊ฒฐ๊ณผ 40 ์ œ 4 ์žฅ ํ•˜๋“œ์›จ์–ด ๊ธฐ๋ฐ˜ Integer Motion Estimation 46 4.1 Bottom-up Integer Motion Estimation์˜ ํ•˜๋“œ์›จ์–ด ์ ์šฉ 46 4.2 ํ•˜๋“œ์›จ์–ด๋ฅผ ์œ„ํ•œ ์ˆ˜์ •๋œ Test Zone Search 47 4.2.1 SAD-tree๋ฅผ ํ™œ์šฉํ•œ CU ๋‚ด PU์˜ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ 47 4.2.2 Grid ๊ธฐ๋ฐ˜์˜ Sampled Raster Search 53 4.2.3 ์„œ๋กœ ๋‹ค๋ฅธ PU ๊ฐ„์˜ ์ค‘๋ณต ์—ฐ์‚ฐ ์ œ๊ฑฐ 55 4.3 Idle cycle์ด ๊ฐ์†Œ๋œ 5-stage ํŒŒ์ดํ”„๋ผ์ธ ์Šค์ผ€์ค„ 56 4.3.1 ํŒŒ์ดํ”„๋ผ์ธ ์Šคํ…Œ์ด์ง€ ๋ณ„ ๋™์ž‘ 56 4.3.2 Test Zone Search์˜ ์˜์กด์„ฑ์œผ๋กœ ์ธํ•œ Idle cycle ๋„์ž… 58 4.3.3 ์ปจํ…์ŠคํŠธ ์Šค์œ„์นญ์„ ํ†ตํ•œ Idle cycle ๊ฐ์†Œ 60 4.4 ๊ณ ์† ๋™์ž‘์„ ์œ„ํ•œ ์ฐธ์กฐ ๋ฐ์ดํ„ฐ ๊ณต๊ธ‰ ๋ฐฉ๋ฒ• 63 4.4.1 ์ฐธ์กฐ ๋ฐ์ดํ„ฐ ์ ‘๊ทผ ํŒจํ„ด ๋ฐ ์ ‘๊ทผ ์ง€์—ฐ ๋ฐœ์ƒ ์‹œ ๋ฌธ์ œ์  63 4.4.2 Search Points์˜ Locality๋ฅผ ํ™œ์šฉํ•œ ์ฐธ์กฐ ๋ฐ์ดํ„ฐ ์ ‘๊ทผ 64 4.4.3 ๋‹จ์ผ cycle ์ฐธ์กฐ ๋ฐ์ดํ„ฐ ์ ‘๊ทผ์„ ์œ„ํ•œ Multi Bank ๋ฉ”๋ชจ๋ฆฌ ๊ตฌ์กฐ 66 4.4.4 ์ฐธ์กฐ ๋ฐ์ดํ„ฐ ์ ‘๊ทผ์˜ ์ž์œ ๋„ ์ œ์–ด๋ฅผ ํ†ตํ•œ ์Šค์œ„์นญ ๋ณต์žก๋„ ์ €๊ฐ ๋ฐฉ๋ฒ• 68 4.5 ํ•˜๋“œ์›จ์–ด ๊ตฌ์กฐ 72 4.5.1 ์ „์ฒด ํ•˜๋“œ์›จ์–ด ๊ตฌ์กฐ 72 4.5.2 ํ•˜๋“œ์›จ์–ด ์„ธ๋ถ€ ์Šค์ผ€์ค„ 78 4.6 ํ•˜๋“œ์›จ์–ด ๊ตฌํ˜„ ๊ฒฐ๊ณผ ๋ฐ ์‹คํ—˜ ๊ฒฐ๊ณผ 82 4.6.1 ํ•˜๋“œ์›จ์–ด ๊ตฌํ˜„ ๊ฒฐ๊ณผ 82 4.6.2 ์ˆ˜ํ–‰ ์‹œ๊ฐ„ ๋ฐ ์••์ถ• ํšจ์œจ 84 4.6.3 ์ œ์•ˆ ๋ฐฉ๋ฒ• ์ ์šฉ ๋‹จ๊ณ„ ๋ณ„ ์„ฑ๋Šฅ ๋ณ€ํ™” 88 4.6.4 ์ด์ „ ์—ฐ๊ตฌ์™€์˜ ๋น„๊ต 91 ์ œ 5 ์žฅ ํ•˜๋“œ์›จ์–ด ๊ธฐ๋ฐ˜ Merge Mode Estimation 96 5.1 ๊ธฐ์กด Merge Mode Estimation์˜ ํ•˜๋“œ์›จ์–ด ๊ด€์ ์—์„œ์˜ ๊ณ ์ฐฐ 96 5.1.1 ๊ธฐ์กด Merge Mode Estimation 96 5.1.2 ๊ธฐ์กด Merge Mode Estimation ํ•˜๋“œ์›จ์–ด ๊ตฌ์กฐ ๋ฐ ๋ถ„์„ 98 5.1.3 ๊ธฐ์กด Merge Mode Estimation์˜ ํ•˜๋“œ์›จ์–ด ์‚ฌ์šฉ๋ฅ  ์ €ํ•˜ ๋ฌธ์ œ 100 5.2 ์—ฐ์‚ฐ๋Ÿ‰ ๋ณ€๋™ํญ์„ ๊ฐ์†Œ์‹œํ‚จ ์ƒˆ๋กœ์šด Merge Mode Estimation 103 5.3 ์ƒˆ๋กœ์šด Merge Mode Estimation์˜ ํ•˜๋“œ์›จ์–ด ๊ตฌํ˜„ 106 5.3.1 ํ›„๋ณด ํƒ€์ž… ๋ณ„ ๋…๋ฆฝ์  path๋ฅผ ๊ฐ–๋Š” ํ•˜๋“œ์›จ์–ด ๊ตฌ์กฐ 106 5.3.2 ํ•˜๋“œ์›จ์–ด ์‚ฌ์šฉ๋ฅ ์„ ๋†’์ด๊ธฐ ์œ„ํ•œ ์ ์‘์  ํ›„๋ณด ํ• ๋‹น ๋ฐฉ๋ฒ• 109 5.3.3 ์ ์‘์  ํ›„๋ณด ํ• ๋‹น ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•œ ํ•˜๋“œ์›จ์–ด ์Šค์ผ€์ค„ 111 5.4 ์‹คํ—˜ ๊ฒฐ๊ณผ ๋ฐ ํ•˜๋“œ์›จ์–ด ๊ตฌํ˜„ ๊ฒฐ๊ณผ 114 5.4.1 ์ˆ˜ํ–‰ ์‹œ๊ฐ„ ๋ฐ ์••์ถ• ํšจ์œจ ๋ณ€ํ™” 114 5.4.2 ํ•˜๋“œ์›จ์–ด ๊ตฌํ˜„ ๊ฒฐ๊ณผ 116 ์ œ 6 ์žฅ Overall Inter Prediction 117 6.1 CTU ๋‹จ์œ„์˜ 3-stage ํŒŒ์ดํ”„๋ผ์ธ Inter Prediction 117 6.2 Two-way Encoding Order 119 6.2.1 Top-down ์ธ์ฝ”๋”ฉ ์ˆœ์„œ์™€ Bottom-up ์ธ์ฝ”๋”ฉ ์ˆœ์„œ 119 6.2.2 ๊ธฐ์กด ๊ณ ์† ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ํ˜ธํ™˜๋˜๋Š” Two-way Encoding Order 120 6.2.3 ๊ธฐ์กด ๊ณ ์† ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๊ฒฐํ•ฉ ๋ฐ ๋น„๊ต ์‹คํ—˜ ๊ฒฐ๊ณผ 123 ์ œ 7 ์žฅ Next Generation Video Coding์œผ๋กœ์˜ ํ™•์žฅ 127 7.1 Bottom-up Motion Vector Prediction์˜ ํ™•์žฅ 127 7.2 Bottom-up Integer Motion Estimation์˜ ํ™•์žฅ 130 ์ œ 8 ์žฅ ๊ฒฐ ๋ก  132Docto

    Study on Fast Affine Motion Parameter Estimation for Efficient Video Coding

    Get PDF
    Tohoku Universityๅคง็”บ็œŸไธ€้ƒŽ่ชฒ

    Error resilience and concealment techniques for high-efficiency video coding

    Get PDF
    This thesis investigates the problem of robust coding and error concealment in High Efficiency Video Coding (HEVC). After a review of the current state of the art, a simulation study about error robustness, revealed that the HEVC has weak protection against network losses with significant impact on video quality degradation. Based on this evidence, the first contribution of this work is a new method to reduce the temporal dependencies between motion vectors, by improving the decoded video quality without compromising the compression efficiency. The second contribution of this thesis is a two-stage approach for reducing the mismatch of temporal predictions in case of video streams received with errors or lost data. At the encoding stage, the reference pictures are dynamically distributed based on a constrained Lagrangian rate-distortion optimization to reduce the number of predictions from a single reference. At the streaming stage, a prioritization algorithm, based on spatial dependencies, selects a reduced set of motion vectors to be transmitted, as side information, to reduce mismatched motion predictions at the decoder. The problem of error concealment-aware video coding is also investigated to enhance the overall error robustness. A new approach based on scalable coding and optimally error concealment selection is proposed, where the optimal error concealment modes are found by simulating transmission losses, followed by a saliency-weighted optimisation. Moreover, recovery residual information is encoded using a rate-controlled enhancement layer. Both are transmitted to the decoder to be used in case of data loss. Finally, an adaptive error resilience scheme is proposed to dynamically predict the video stream that achieves the highest decoded quality for a particular loss case. A neural network selects among the various video streams, encoded with different levels of compression efficiency and error protection, based on information from the video signal, the coded stream and the transmission network. Overall, the new robust video coding methods investigated in this thesis yield consistent quality gains in comparison with other existing methods and also the ones implemented in the HEVC reference software. Furthermore, the trade-off between coding efficiency and error robustness is also better in the proposed methods

    Novi algoritam za kompresiju seizmiฤkih podataka velike amplitudske rezolucije

    Get PDF
    Renewable sources cannot meet energy demand of a growing global market. Therefore, it is expected that oil & gas will remain a substantial sources of energy in a coming years. To find a new oil & gas deposits that would satisfy growing global energy demands, significant efforts are constantly involved in finding ways to increase efficiency of a seismic surveys. It is commonly considered that, in an initial phase of exploration and production of a new fields, high-resolution and high-quality images of the subsurface are of the great importance. As one part in the seismic data processing chain, efficient managing and delivering of a large data sets, that are vastly produced by the industry during seismic surveys, becomes extremely important in order to facilitate further seismic data processing and interpretation. In this respect, efficiency to a large extent relies on the efficiency of the compression scheme, which is often required to enable faster transfer and access to data, as well as efficient data storage. Motivated by the superior performance of High Efficiency Video Codingย (HEVC), and driven by the rapid growth in data volume produced by seismic surveys, this work explores a 32 bits per pixel (b/p) extension of the HEVC codec for compression of seismic data. It is proposed to reassemble seismic slices in a format that corresponds to video signal and benefit from the coding gain achieved by HEVC inter mode, besides the possible advantages of the (still image) HEVC intra mode. To this end, this work modifies almost all components of the original HEVC codec to cater for high bit-depth coding of seismic data: Lagrange multiplier used in optimization of the coding parameters has been adapted to the new data statistics, core transform and quantization have been reimplemented to handle the increased bit-depth range, and modified adaptive binary arithmetic coder has been employed for efficient entropy coding. In addition, optimized block selection, reduced intra prediction modes, and flexible motion estimation are tested to adapt to the structure of seismic data. Even though the new codec after implementation of the proposed modifications goes beyond the standardized HEVC, it still maintains a generic HEVC structure, and it is developed under the general HEVC framework. There is no similar work in the field of the seismic data compression that uses the HEVC as a base codec setting. Thus, a specific codec design has been tailored which, when compared to the JPEG-XR and commercial wavelet-based codec, significantly improves the peak-signal-tonoise- ratio (PSNR) vs. compression ratio performance for 32 b/p seismic data. Depending on a proposed configurations, PSNR gain goes from 3.39 dB up to 9.48 dB. Also, relying on the specific characteristics of seismic data, an optimized encoder is proposed in this work. It reduces encoding time by 67.17% for All-I configuration on trace image dataset, and 67.39% for All-I, 97.96% for P2-configuration and 98.64% for B-configuration on 3D wavefield dataset, with negligible coding performance losses. As a side contribution of this work, HEVC is analyzed within all of its functional units, so that the presented work itself can serve as a specific overview of methods incorporated into the standard
    corecore