22,724 research outputs found

    Paradoxes related to the rate of transmission of information

    Get PDF
    This paper discusses paradoxes related to the possibility of infinite information capacity of certain types of channels. First, a paradox of this type is derived which shows that such paradoxes are not necessarily dependent on the assumption of Gaussian statistics.Next, in the case where signal and noise are assumed to be Gaussian, a different example of this type of paradox is derived; also, a necessary and sufficient condition for the avoidance of this form of the paradox is derived. This condition is shown to be satisfied in a class of plausible physical situations

    Random Access Game in Fading Channels with Capture: Equilibria and Braess-like Paradoxes

    Full text link
    The Nash equilibrium point of the transmission probabilities in a slotted ALOHA system with selfish nodes is analyzed. The system consists of a finite number of heterogeneous nodes, each trying to minimize its average transmission probability (or power investment) selfishly while meeting its average throughput demand over the shared wireless channel to a common base station (BS). We use a game-theoretic approach to analyze the network under two reception models: one is called power capture, the other is called signal to interference plus noise ratio (SINR) capture. It is shown that, in some situations, Braess-like paradoxes may occur. That is, the performance of the system may become worse instead of better when channel state information (CSI) is available at the selfish nodes. In particular, for homogeneous nodes, we analytically present that Braess-like paradoxes occur in the power capture model, and in the SINR capture model with the capture ratio larger than one and the noise to signal ratio sufficiently small.Comment: 30 pages, 5 figure

    Virtual Gravity and the Duality of Reality

    Get PDF
    It is shown that a hypothesis about gravity having a virtual cause implies there are two primary reference frames, a reality and a functional virtual reality and an equivalence principle relating the two is postulated. A mathematical expression relating the primary reference frames to the state of reality provides an explanation of particle-wave duality and resolves the controversy about the speed of gravity. A model for motion, time and particle formation is briefly discussed, in which the hypothesis about the virtual cause of gravity and supporting postulates are valid. It is further shown that such model provides solutions to unsolved paradoxes and a unification of consistent but contradictory ancient theories of matter and motion. Finally, a reference is made about the basis for devising experiments and testing the predictions of the model

    Sending Signals to Space-Like Separated Regions

    Get PDF
    Two recent works suggest a possibility of sending signals to a space-like separated region, contrary to the spirit of special relativity. In the first work [J. Grunhaus, S. Popescu, and D. Rohrlich, Phys. Rev. A 53, 3781 (1996)] it has been shown that sending signals to particular union of space-like separated region cannot cause causality paradoxes. Another work [Y. Aharonov and L. Vaidman, Phys. Rev. A 61, 052108 (2000)] showed that the relative phase of quantum superposition of a particle in two separate locations can be measured locally. Together with the possibility of changing the relative phase in a nonlocal way using potential effect we, apparently, have a method of sending signals to space-like separated regions. These arguments are critically analyzed in this paper.Comment: 6 pages. Contribution to the "Mysteries and Paradoxes in Quantum Mechanics", Garda Lake 200

    On the propagation speed of evanescent modes

    Get PDF
    The group-velocity of evanescent waves (in undersized waveguides, for instance) was theoretically predicted, and has been experimentally verified, to be Superluminal (v_g > c). By contrast, it is known that the precursor speed in vacuum cannot be larger than c. In this paper, by computer simulations based on Maxwell equations only, we show the existence of both phenomena. In other words, we verify the actual possibility of Superluminal group velocities, without violating the so-called (naive) Einstein causality. (Subject classes: General physics, Classical physics, Optics, Special Relativity; PACS nos.: 73.40Gk, 03.80+z, 03.65Bz; Keywords: evanescent waves; tunnelling photons; Hartman effect; group velocity; Superluminal waves; precursors; transient waves; front velocity; Maxwell equations; electromagnetic waves; computer simulations; Special Relativity; Extended Relativity).Comment: plain LaTeX file (14 pages), plus 15 figures in .jp

    Optimal Eavesdropping in Quantum Cryptography. II. Quantum Circuit

    Full text link
    It is shown that the optimum strategy of the eavesdropper, as described in the preceding paper, can be expressed in terms of a quantum circuit in a way which makes it obvious why certain parameters take on particular values, and why obtaining information in one basis gives rise to noise in the conjugate basis.Comment: 7 pages, 1 figure, Latex, the second part of quant-ph/970103

    Decoherence - Fluctuation Relation and Measurement Noise

    Get PDF
    We discuss fluctuations in the measurement process and how these fluctuations are related to the dissipational parameter characterising quantum damping or decoherence. On the example of the measuring current of the variable-barrier or QPC problem we show there is an extra noise or fluctuation connected with the possible different outcomes of a measurement. This noise has an enhanced short time component which could be interpreted as due to ``telegraph noise'' or ``wavefunction collapses''. Furthermore the parameter giving the the strength of this noise is related to the parameter giving the rate of damping or decoherence.Comment: 6 pages, no figures, for Okun Festschrift, Physics Report
    • …
    corecore