1,407 research outputs found

    QUANTIFICATION OF PAPILLARY MUSCLE MOTION AND MITRAL REGURGITATION AFTER MYOCARDIAL INFARCTION

    Get PDF
    Change in papillary muscle motion as a result of left ventricular (LV) remodeling after posterolateral myocardial infarction is thought to contribute to ischemic mitral regurgitation. A finite element (FE) model of the LV was created from magnetic resonance images acquired immediately before myocardial infarction and 8 weeks later in a cohort of 12 sheep. Severity of mitral regurgitation was rated by two-dimensional echocardiography and regurgitant volume was estimated using MRI. Of the cohort, 6 animals (DC) received hydrogel injection therapy shown to limit ventricular remodeling after myocardial infarction while the control group (MI) received a similar pattern of saline injections. LV pressure was determined by direct invasive measurement and volume was estimated from MRI. FE models of the LV for each animal included both healthy and infarct tissue regions as well as a simulated hydrogel injection pattern for the DC group. Constitutive model material parameters for each region in the FE model were assigned based on results from previous research. Invasive LV pressure measurements at end diastole and end systole were used as boundary conditions to drive model simulations for each animal. Passive stiffness (C) and active material parameter (Tmax) were adjusted to match MRI estimations of LV volume at end systole and end diastole. Nodal positions of the chordae tendineae (CT) were determined by measurements obtained from the excised heart of each animal at the terminal timepoint. Changes in CT nodal displacements between end systole and end diastole at 0 and 8-week timepoints were used to investigate the potential contribution of changes in papillary muscle motion to the progression of ischemic mitral regurgitation after myocardial infarction. Nodal displacements were broken down into radial, circumferential, and longitudinal components relative to the anatomy of the individual animal model. Model results highlighted an outward radial movement in the infarct region after 8 weeks in untreated animals, while radial direction of motion observed in the treated animal group was preserved relative to baseline. Circumferential displacement decreased in the remote region in the untreated animal group after 8 weeks but was preserved relative to baseline in the treated animal group. MRI estimates of regurgitant volume increased significantly in the untreated animal group after 8 weeks but did not increase in the treated group. The results of this analysis suggest that hydrogel injection treatment may serve to limit changes in papillary muscle motion and severity of mitral regurgitation after posterolateral myocardial infarction

    A COMPUTATIONAL STUDY OF PATCH IMPLANTATION AND MITRAL VALVE MECHANICS

    Get PDF
    Myocardial infarction (i.e., a heart attack) is the most common heart disease in the United States. Mitral valve regurgitation, or the backflow of blood into the atrium from the left ventricle, is one of the complications associated with myocardial infarction. In this dissertation, a validated model of a sheep heart that has suffered myocardial infarction has been employed to study mitral valve regurgitation. The model was rebuilt with the knowledge of geometrical changes captured with MRI technique and is assigned with anisotropic, inhomogeneous, nearly incompressible and highly non-linear material properties. Patch augmentation was performed on its anterior leaflet, using a simplified approach, and its posterior leaflet, using a more realistic approach. In this finite element simulation, we virtually installed an elliptical patch within the central portion of the posterior leaflet. To the best of the author’s knowledge, this type of simulation has not been performed previously. In another simulation, the effect of patch within the anterior leaflet was simulated. The results from the two different surgical simulations show that patch implantation helps the free edges of the leaflets come close to one another, which leads to improved coaptation. Additionally, the changes in chordal force distributions are also reported. Finally, this study answers a few questions regarding mitral valve patch augmentation surgeries and emphasizes the importance of further investigations on the influence of patch positioning and material properties on key outcomes. The ultimate goal is to use the proposed techniques to assess human models that are patient-specific

    In-vitro modelling of the left heart

    Get PDF

    Papillary muscle traction in mitral valve prolapse: Quantitation by two-dimensional echocardiography

    Get PDF
    Previous angiographic observations in patients with mitral valve prolapse have suggested that superior leaflet displacement results in abnormal superior tension on the papillary muscle tips that causes their superior traction or displacement. It has further been postulated that such tension can potentially affect the mechanical and electrophysiologic function of the left ventricle. The purpose of this study was to confirm and quantitate this phenomenon noninvasively by using two-dimensional echocardiography to determine whether superior displacement of the papillary muscle tips occurs and its relation to the degree of mitral leaflet displacement.Directed echocardiographic examination of the papillary muscles and mitral anulus was carried out in a series of patients with classic mitral valve prolapse and results were compared with those in a group of normal control subjects. Distance from the anulus to the papillary muscle tip was measured both in early and at peak ventricular systole. In normal subjects, this distance did not change significantly through systole, whereas in the patient group it decreased, corresponding to a superior displacement of the papillary muscle tips toward the anulus in systole (8.5 ± 2.6 vs. 0.8 ± 0.7 mm; p < 0.0001). This superior papillary muscle motion paralleled the superior displacement of the leaflets in individual patients (y = l.0x + 0.8; r = 0.93) and followed a similar time course. The systolic motion of the mitral anulus toward the apex, assessed with respect to a fixed external reference, was not significantly different in the patients and control groups (14.3 ± 4 vs. 15.5 ± 4.4 mm; p = 0.4) and therefore could not explain the superior papillary muscle tip motion relative to the anulus in the patients with mitral valve prolapse.These results demonstrate that normal mechanisms maintain a relatively constant distance between the papillary muscle tips and the mitral anulus during systole. In classic mitral valve prolapse, superior leaflet displacement is paralleled by superior displacement of the papillary muscles that is consistent with superiorly directed forces causing their traction. Two-dimensional echocardiography can therefore be used to measure these relations and test hypotheses as to their clinical correlates in patients with mitral valve prolapse

    QUANTIFICATION OF MYOCARDIAL MECHANICS IN LEFT VENTRICLES UNDER INOTROPIC STIMULATION AND IN HEALTHY RIGHT VENTRICLES USING 3D DENSE CMR

    Get PDF
    Statistical data from clinical studies indicate that the death rate caused by heart disease has decreased due to an increased use of evidence-based medical therapies. This includes the use of magnetic resonance imaging (MRI), which is one of the most common non-invasive approaches in evidence-based health care research. In the current work, I present 3D Lagrangian strains and torsion in the left ventricle of healthy and isoproterenol-stimulated rats, which were investigated using Displacement ENcoding with Stimulated Echoes (DENSE) cardiac magnetic resonance (CMR) imaging. With the implementation of the 12-segment model, a detailed profile of regional cardiac mechanics was reconstructed for each subject. Statistical analysis revealed that isoproterenol induced a significant change in the strains and torsion in certain regions at the mid-ventricle level. In addition, I investigated right ventricular cardiac mechanics with the methodologies developed for the left ventricle. This included a comparison of different regions within the basal and mid-ventricular regions. Despite no regional variation found in the peak circumferential strain, the peak longitudinal strain exhibited regional variation at the anterior side of the RV due to the differences in biventricular torsion, mechanism of RV free wall contraction, and fiber architecture at RV insertions. Future applications of the experimental work presented here include the construction and validation of biventricular finite element models. Specifically, the strains predicted by the models will be statistically compared with experimental strains. In addition, the results of the present study provide an essential reference of RV baseline evaluated with DENSE MRI, a highly objective technique

    Experimental and theoretical system analysis for canine myocardial oxygen supply and demand and their determinants

    Get PDF
    Imperial Users onl
    • …
    corecore