417 research outputs found

    The optical spread functions and noise characteristics of selected paper substrates measured in typical reflection optical system configurations

    Get PDF
    Research into the signal and noise characteristics that ultimately determine the performance quality of an imaging system has done little to isolate the contribution of the final image carrying substrate. A study is presented that experimentally analyzes some optical characteristics of six paper substrates representative of those used in lithography, xerography and photography. The optical characteristics studied can have a direct impact on image quality and are a result of the paper structure and its light scattering properties. Reflection microdensitometer techniques are used to provide representations of optical spread functions and an analysis of paper noise which is quantified as a single rms parameter and as a function of frequency in calculated Wiener or Noise Power spectra. The measured spread functions are found to vary in width from lOOiim to 250pm depending upon paper type. An exponential model is used to represent the spread functions and the corresponding modulation transfer functions are calculated. MTF values for the six papers range from 0.99 to 0.73 at 2 cycles per mm. Measured Wiener spectra are presented for the six papers under a variety of measurement conditions. The spectra are found to decrease rapidly with increasing frequency. While this spectrum shape is relatively independent of paper type or measurement condition, the noise power amplitude varies significantly. Data are presented to determine the effect of illumination geometry, backing substrate, paper side and grain direction. Paper noise, or the rms fluctuation in reflected density as a percentage of the reflectance signal, is found to be a 2% effect regardless of paper type under conditions of annular illumination; increasing the illumination directionality, the most sensitive variable tested, increases paper noise to a 4-6% effect

    X ray microscope assembly and alignment support and advanced x ray microscope design and analysis

    Get PDF
    Considerable efforts have been devoted recently to the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft x ray application in microscopy and projection lithography. The spherical Schwarzschild microscope consists of two concentric spherical mirrors configured such that the third order spherical aberration and coma are zero. Since multilayers are used on the mirror substrates for x ray applications, it is desirable to have only two reflecting surfaces in a microscope. In order to reduce microscope aberrations and increase the field of view, generalized mirror surface profiles have been considered in this investigation. Based on incoherent and sine wave modulation transfer function (MTF) calculations, the object plane resolution of a microscope has been analyzed as a function of the object height and numerical aperture (NA) of the primary for several spherical Schwarzschild, conic, and aspherical head reflecting two mirror microscope configurations

    Space photography and the exploration of Mars

    Get PDF
    A general exposition of the scientific potentialities and analytic framework of space photography is presented using the photography of Mars from flybys and orbiters as the principal example. Space photography is treated here as a communication process in which planetary scene information is communicated to the eye-brain receiver of earth-based interpreters. The salient parameters of this process are: (1) total information returned, (2) surface resolution, and (3) a priori knowledge regarding the planetary surface observed

    X-ray diffraction microscopy based on refractive optics

    Full text link
    We describe a diffraction microscopy technique based on refractive optics to study structural variations in crystals. The X-ray beam diffracted by a crystal was magnified by beryllium parabolic refractive lenses on a 2D X-ray camera. The microscopy setup was integrated into the 6-circle Huber diffractometer at the ESRF beamline ID06. Our setup allowed us to visualize structural imperfections with a resolution of approximately 1 micrometer. The configuration, however, can easily be adapted for sub-micrometer resolution.Comment: 9 pages, 4 figures. Submitted to Journal of Synchrotron Radiation on April 4th 2012. Rejecte

    An ultrahigh-speed digitizer for the Harvard College Observatory astronomical plates

    Full text link
    A machine capable of digitizing two 8 inch by 10 inch (203 mm by 254 mm) glass astrophotographic plates or a single 14 inch by 17 inch (356 mm by 432 mm) plate at a resolution of 11 microns per pixel or 2309 dots per inch (dpi) in 92 seconds is described. The purpose of the machine is to digitize the \~500,000 plate collection of the Harvard College Observatory in a five year time frame. The digitization must meet the requirements for scientific work in astrometry, photometry, and archival preservation of the plates. This paper describes the requirements for and the design of the subsystems of the machine that was developed specifically for this task.Comment: 12 pages, 9 figures, 1 table; presented at SPIE (July, 2006) and published in Proceeding

    Design and analysis of multilayer x ray/XUV microscope

    Get PDF
    The design and analysis of a large number of normal incidence multilayer x ray microscopes based on the spherical mirror Schwarzschild configuration is examined. Design equations for the spherical mirror Schwarzschild microscopes are summarized and used to evaluate mirror parameters for microscopes with magnifications ranging from 2 to 50x. Ray tracing and diffraction analyses are carried out for many microscope configurations to determine image resolution as a function of system parameters. The results are summarized in three publication included herein. A preliminary study of advanced reflecting microscope configurations, where aspherics are used in place of the spherical microscope mirror elements, has indicated that the aspherical elements will improve off-axis image resolution and increase the effective field of view

    Comparison of optimal performance at 300keV of three direct electron detectors for use in low dose electron microscopy

    Get PDF
    Low dose electron imaging applications such as electron cryo-microscopy are now benefitting from the improved performance and flexibility of recently introduced electron imaging detectors in which electrons are directly incident on backthinned CMOS sensors. There are currently three commercially available detectors of this type: the Direct Electron DE-20, the FEI Falcon II and the Gatan K2 Summit. These have different characteristics and so it is important to compare their imaging properties carefully with a view to optimise how each is used. Results at 300 keV for both the modulation transfer function (MTF) and the detective quantum efficiency (DQE) are presented. Of these, the DQE is the most important in the study of radiation sensitive samples where detector performance is crucial. We find that all three detectors have a better DQE than film. The K2 Summit has the best DQE at low spatial frequencies but with increasing spatial frequency its DQE falls below that of the Falcon II

    Quantification of High-Resolution Lattice Images and Electron Holograms

    Get PDF
    Progress towards the quantification of high-resolution electron microscopy and electron holograms has been achieved using digital acquisition with a slow-scan charge-coupled device (CCD) camera. Two applications are described: the precise measurement of lattice-fringe spacings and the determination of the mean inner potential. Lattice images can be characterized by a finite sum of two-dimensional sinusoids. A new method for measurement of the frequency, amplitude and phase of each sinusoid, based on an interpolation technique in reciprocal space, is presented. The method offers considerably higher precision for measurement of lattice fringes than the optical bench and is applicable to images recorded with an electron dose of less than 1 el / Å2 and specimen areas as small as 8 Å across. The attainable precision is dependent on specimen characteristics, electron dose and the size of the measured area, and ranges from 0.001 Å to 0.05 Å. An improved method has also been developed for measurement of mean inner potential using digital off-axis electron holograms from 90° crystal wedges. The value of (-14.21 ± 0.16) V obtained for GaAs represents the most accurate measurement yet reported for the mean inner potential

    Near-IR wide field-of-view Huygens metalens for outdoor imaging applications

    Full text link
    The ongoing effort to implement compact and cheap optical systems is the main driving force for the recent flourishing research in the field of optical metalenses. Metalenses are a type of metasurface, used for focusing and imaging applications, and are implemented based on the nanopatterning of an optical surface. The challenge faced by metalens research is to reach high levels of performance, using simple fabrication methods suitable for mass-production. In this paper we present a Huygens nanoantenna based metalens, designed for outdoor photographic/surveillance applications in the near-infra-red. We show that good imaging quality can be obtained over a field-of-view (FOV) as large as +/-15 degrees. This first successful implementation of metalenses for outdoor imaging applications is expected to provide insight and inspiration for future metalens imaging applications
    • …
    corecore