125 research outputs found

    On the data compression and transmission aspects of panoramic video

    Get PDF
    This paper proposes efficient data compression and transmission techniques for panoramic video. Panoramic videos have been used as a means for representing dynamic scenes or paths along a static environment. They allow the user to change viewpoints interactively at a point in time or space. High-resolution panoramic videos, while desirable, consume a significant amount of storage and bandwidth for transmission, and make real-time decoding very compute-intensive. A high performance MPEG-like compression algorithm, which takes into account the random access requirements and the redundancies of the panoramic video, is presented. The transmission aspects of panoramic video over cable network, LAN and Internet are also briefly discussed.published_or_final_versio

    The compression issues of panoramic video

    Get PDF
    The paper proposes efficient data compression techniques for panoramic video. Panoramic videos have been used as a means for representing dynamic scenes or paths along a static environment. They allow the user to change viewpoints interactively at a point in time or space. High-resolution panoramic videos, while desirable, consume a significant amount of storage and bandwidth for transmission, and make real-time decoding very computationally intensive. A high performance MPEG-like compression algorithm, which takes into account the random access requirements and the redundancies of the panoramic video, is presented. The transmission aspects of panoramic video over cable network, LAN and Internet are also briefly discussed.published_or_final_versio

    Design and creation of a virtual world of Petra, Jordan

    Get PDF
    Includes bibliographical references.This thesis presents the design and creation of a 3D virtual world of Petra, Jordan, based on the digital spatial documentation of this UNESCO World Heritage Site by the Zamani project. Creating digital records of the spatial domain of heritage sites is a well-established practice that employs the technologies of laser scanning, GPS and traditional surveys, aerial and close range photogrammetry, and 360-degree panorama photography to capture spatial data of a site. Processing this data to produce textured 3D models, sections elevations, GISs, and panorama tours to has led to the establishment of the field of virtual heritage. Applications to view this spatial data are considered too specialised to be used by the general public with only trained heritage practitioners being able to use the data. Additionally, data viewing platforms have not been designed to allow for the viewing of combinations of 3D data in an intuitive and engaging manner as currently each spatial data type must be viewed by independent software. Therefore a fully integrated software platform is needed which would allow any interested person, without prior training, easy access to a combination of spatial data, from anywhere in the world. This study seeks to provide a solution to the above requirement by using a game engine to assimilate spatial data of heritage sites in a 3D virtual environment where a virtual visitor is able to interactively engage with combinations of spatial data. The study first begins with an analysis of what virtual heritage applications, in the form of virtual environments, have been created, and the elements that were used in their creation. These elements are then applied to the design and creation of the virtual world of Petra

    Exploring the past with Google Cardboard

    Get PDF
    Combining digital reconstruction with mobile technologies has the potential of enriching visitors experience to historic sites. Through designing a mobile App with Google Cardboard it is possible to use technology already in peoples' pockets to provide immersive on-site exploration of historic sites. This paper looks at our experience in developing such a mobile App which acts as a digital guided tour of the remains of St Andrews Cathedral. The App brings together traditional media such as audio, images, panoramas, 3D video and 4π Steradian (or 360°) video with a mobile smartphone and Google Cardboard to provide a tour of one of Scotland's most important historic sites. The mobile App is available from both Google Play and iTunes, providing direct delivery to a potential audience of millions. It complements the location-aware mediaeval St Andrews App, which provides a guided tour to the town of St Andrews as a whole. In the absence of Google Cardboard the App is still useful providing both visual content and audio commentary on this historic monument.Postprin

    Data compression and transmission aspects of panoramic videos

    Get PDF
    Panoramic videos are effective means for representing static or dynamic scenes along predefined paths. They allow users to change their viewpoints interactively at points in time or space defined by the paths. High-resolution panoramic videos, while desirable, consume a significant amount of storage and bandwidth for transmission. They also make real-time decoding computationally very intensive. This paper proposes efficient data compression and transmission techniques for panoramic videos. A high-performance MPEG-2-like compression algorithm, which takes into account the random access requirements and the redundancies of panoramic videos, is proposed. The transmission aspects of panoramic videos over cable networks, local area networks (LANs), and the Internet are also discussed. In particular, an efficient advanced delivery sharing scheme (ADSS) for reducing repeated transmission and retrieval of frequently requested video segments is introduced. This protocol was verified by constructing an experimental VOD system consisting of a video server and eight Pentium 4 computers. Using the synthetic panoramic video Village at a rate of 197 kb/s and 7 f/s, nearly two-thirds of the memory access and transmission bandwidth of the video server were saved under normal network traffic.published_or_final_versio

    Spatial Interaction for Immersive Mixed-Reality Visualizations

    Get PDF
    Growing amounts of data, both in personal and professional settings, have caused an increased interest in data visualization and visual analytics. Especially for inherently three-dimensional data, immersive technologies such as virtual and augmented reality and advanced, natural interaction techniques have been shown to facilitate data analysis. Furthermore, in such use cases, the physical environment often plays an important role, both by directly influencing the data and by serving as context for the analysis. Therefore, there has been a trend to bring data visualization into new, immersive environments and to make use of the physical surroundings, leading to a surge in mixed-reality visualization research. One of the resulting challenges, however, is the design of user interaction for these often complex systems. In my thesis, I address this challenge by investigating interaction for immersive mixed-reality visualizations regarding three core research questions: 1) What are promising types of immersive mixed-reality visualizations, and how can advanced interaction concepts be applied to them? 2) How does spatial interaction benefit these visualizations and how should such interactions be designed? 3) How can spatial interaction in these immersive environments be analyzed and evaluated? To address the first question, I examine how various visualizations such as 3D node-link diagrams and volume visualizations can be adapted for immersive mixed-reality settings and how they stand to benefit from advanced interaction concepts. For the second question, I study how spatial interaction in particular can help to explore data in mixed reality. There, I look into spatial device interaction in comparison to touch input, the use of additional mobile devices as input controllers, and the potential of transparent interaction panels. Finally, to address the third question, I present my research on how user interaction in immersive mixed-reality environments can be analyzed directly in the original, real-world locations, and how this can provide new insights. Overall, with my research, I contribute interaction and visualization concepts, software prototypes, and findings from several user studies on how spatial interaction techniques can support the exploration of immersive mixed-reality visualizations.Zunehmende Datenmengen, sowohl im privaten als auch im beruflichen Umfeld, führen zu einem zunehmenden Interesse an Datenvisualisierung und visueller Analyse. Insbesondere bei inhärent dreidimensionalen Daten haben sich immersive Technologien wie Virtual und Augmented Reality sowie moderne, natürliche Interaktionstechniken als hilfreich für die Datenanalyse erwiesen. Darüber hinaus spielt in solchen Anwendungsfällen die physische Umgebung oft eine wichtige Rolle, da sie sowohl die Daten direkt beeinflusst als auch als Kontext für die Analyse dient. Daher gibt es einen Trend, die Datenvisualisierung in neue, immersive Umgebungen zu bringen und die physische Umgebung zu nutzen, was zu einem Anstieg der Forschung im Bereich Mixed-Reality-Visualisierung geführt hat. Eine der daraus resultierenden Herausforderungen ist jedoch die Gestaltung der Benutzerinteraktion für diese oft komplexen Systeme. In meiner Dissertation beschäftige ich mich mit dieser Herausforderung, indem ich die Interaktion für immersive Mixed-Reality-Visualisierungen im Hinblick auf drei zentrale Forschungsfragen untersuche: 1) Was sind vielversprechende Arten von immersiven Mixed-Reality-Visualisierungen, und wie können fortschrittliche Interaktionskonzepte auf sie angewendet werden? 2) Wie profitieren diese Visualisierungen von räumlicher Interaktion und wie sollten solche Interaktionen gestaltet werden? 3) Wie kann räumliche Interaktion in diesen immersiven Umgebungen analysiert und ausgewertet werden? Um die erste Frage zu beantworten, untersuche ich, wie verschiedene Visualisierungen wie 3D-Node-Link-Diagramme oder Volumenvisualisierungen für immersive Mixed-Reality-Umgebungen angepasst werden können und wie sie von fortgeschrittenen Interaktionskonzepten profitieren. Für die zweite Frage untersuche ich, wie insbesondere die räumliche Interaktion bei der Exploration von Daten in Mixed Reality helfen kann. Dabei betrachte ich die Interaktion mit räumlichen Geräten im Vergleich zur Touch-Eingabe, die Verwendung zusätzlicher mobiler Geräte als Controller und das Potenzial transparenter Interaktionspanels. Um die dritte Frage zu beantworten, stelle ich schließlich meine Forschung darüber vor, wie Benutzerinteraktion in immersiver Mixed-Reality direkt in der realen Umgebung analysiert werden kann und wie dies neue Erkenntnisse liefern kann. Insgesamt trage ich mit meiner Forschung durch Interaktions- und Visualisierungskonzepte, Software-Prototypen und Ergebnisse aus mehreren Nutzerstudien zu der Frage bei, wie räumliche Interaktionstechniken die Erkundung von immersiven Mixed-Reality-Visualisierungen unterstützen können

    Intelligent microscope III

    Get PDF

    Spherical Image Processing for Immersive Visualisation and View Generation

    Get PDF
    This research presents the study of processing panoramic spherical images for immersive visualisation of real environments and generation of in-between views based on two views acquired. For visualisation based on one spherical image, the surrounding environment is modelled by a unit sphere mapped with the spherical image and the user is then allowed to navigate within the modelled scene. For visualisation based on two spherical images, a view generation algorithm is developed for modelling an indoor manmade environment and new views can be generated at an arbitrary position with respect to the existing two. This allows the scene to be modelled using multiple spherical images and the user to move smoothly from one sphere mapped image to another one by going through in-between sphere mapped images generated

    Merging static and dynamic visual media along an event timeline

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1998.Includes bibliographical references (p. 63-65).Kyratso Karahalios.M.S
    • …
    corecore