10 research outputs found

    Note on Hamiltonicity of basis graphs of even delta-matroids

    Full text link
    We show that the basis graph of an even delta-matroid is Hamiltonian if it has more than two vertices. More strongly, we prove that for two distinct edges ee and ff sharing a common end, it has a Hamiltonian cycle using ee and avoiding ff unless it has at most two vertices or it is a cycle of length at most four. We also prove that if the basis graph is not a hypercube graph, then each vertex belongs to cycles of every length ℓ≄3\ell\ge 3, and each edge belongs to cycles of every length ℓ≄4\ell \ge 4. For the last theorem, we provide two proofs, one of which uses the result of Naddef (1984) on polytopes and the result of Chepoi (2007) on basis graphs of even delta-matroids, and the other is a direct proof using various properties of even delta-matroids. Our theorems generalize the analogous results for matroids by Holzmann and Harary (1972) and Bondy and Ingleton (1976).Comment: 10 pages, 2 figures. Corrected a typ

    Counting cycles in planar triangulations

    Full text link
    We investigate the minimum number of cycles of specified lengths in planar nn-vertex triangulations GG. It is proven that this number is Ω(n)\Omega(n) for any cycle length at most 3+max⁥{rad(G∗),⌈(n−32)log⁥32⌉}3 + \max \{ {\rm rad}(G^*), \lceil (\frac{n-3}{2})^{\log_32} \rceil \}, where rad(G∗){\rm rad}(G^*) denotes the radius of the triangulation's dual, which is at least logarithmic but can be linear in the order of the triangulation. We also show that there exist planar hamiltonian nn-vertex triangulations containing O(n)O(n) many kk-cycles for any k∈{⌈n−n5⌉,
,n}k \in \{ \lceil n - \sqrt[5]{n} \rceil, \ldots, n \}. Furthermore, we prove that planar 4-connected nn-vertex triangulations contain Ω(n)\Omega(n) many kk-cycles for every k∈{3,
,n}k \in \{ 3, \ldots, n \}, and that, under certain additional conditions, they contain Ω(n2)\Omega(n^2) kk-cycles for many values of kk, including nn

    The Properties of Graphs of Matroids

    Get PDF

    Rooted structures in graphs: a project on Hadwiger's conjecture, rooted minors, and Tutte cycles

    Get PDF
    Hadwigers Vermutung ist eine der anspruchsvollsten Vermutungen fĂŒr Graphentheoretiker und bietet eine weitreichende Verallgemeinerung des Vierfarbensatzes. Ausgehend von dieser offenen Frage der strukturellen Graphentheorie werden gewurzelte Strukturen in Graphen diskutiert. Eine Transversale einer Partition ist definiert als eine Menge, welche genau ein Element aus jeder Menge der Partition enthĂ€lt und sonst nichts. FĂŒr einen Graphen G und eine Teilmenge T seiner Knotenmenge ist ein gewurzelter Minor von G ein Minor, der T als Transversale seiner Taschen enthĂ€lt. Sei T eine Transversale einer FĂ€rbung eines Graphen, sodass es ein System von kanten-disjunkten Wegen zwischen allen Knoten aus T gibt; dann stellt sich die Frage, ob es möglich ist, die Existenz eines vollstĂ€ndigen, in T gewurzelten Minors zu gewĂ€hrleisten. Diese Frage ist eng mit Hadwigers Vermutung verwoben: Eine positive Antwort wĂŒrde Hadwigers Vermutung fĂŒr eindeutig fĂ€rbbare Graphen bestĂ€tigen. In dieser Arbeit wird ebendiese Fragestellung untersucht sowie weitere Konzepte vorgestellt, welche bekannte Ideen der strukturellen Graphentheorie um eine Verwurzelung erweitern. Beispielsweise wird diskutiert, inwiefern hoch zusammenhĂ€ngende Teilmengen der Knotenmenge einen hoch zusammenhĂ€ngenden, gewurzelten Minor erzwingen. Zudem werden verschiedene Ideen von HamiltonizitĂ€t in planaren und nicht-planaren Graphen behandelt.Hadwiger's Conjecture is one of the most tantalising conjectures for graph theorists and offers a far-reaching generalisation of the Four-Colour-Theorem. Based on this major issue in structural graph theory, this thesis explores rooted structures in graphs. A transversal of a partition is a set which contains exactly one element from each member of the partition and nothing else. Given a graph G and a subset T of its vertex set, a rooted minor of G is a minor such that T is a transversal of its branch set. Assume that a graph has a transversal T of one of its colourings such that there is a system of edge-disjoint paths between all vertices from T; it comes natural to ask whether such graphs contain a minor rooted at T. This question of containment is strongly related to Hadwiger's Conjecture; indeed, a positive answer would prove Hadwiger's Conjecture for uniquely colourable graphs. This thesis studies the aforementioned question and besides, presents several other concepts of attaching rooted relatedness to ideas in structural graph theory. For instance, whether a highly connected subset of the vertex set forces a highly connected rooted minor. Moreover, several ideas of Hamiltonicity in planar and non-planar graphs are discussed

    PolĂŒtoopide laienditega seotud ĂŒlesanded

    Get PDF
    VĂ€itekirja elektrooniline versioon ei sisalda publikatsiooneLineaarplaneerimine on optimeerimine matemaatilise mudeliga, mille sihiÂŹfunktsioon ja kitsendused on esitatud lineaarsete seostega. Paljusid igapĂ€eva elu vĂ€ljakutseid vĂ”ime vaadelda lineaarplaneerimise vormis, nĂ€iteks miinimumhinna vĂ”i maksimaalse tulu leidmist. Sisepunkti meetod saavutab hĂ€id tulemusi nii teoorias kui ka praktikas ning lahendite leidmise tööaeg ja lineaarsete seoste arv on polĂŒnomiaalses seoses. Sellest tulenevalt eksponentsiaalne arv lineaarseid seoseid vĂ€ljendub ka ekponentsiaalses tööajas. Iga vajalik lineaarne seos vastab ĂŒhele polĂŒtoobi P tahule, mis omakorda tĂ€histab lahendite hulka. Üks vĂ”imalus tööaja vĂ€hendamiseks on suurendada dimensiooni, mille tulemusel vĂ€heneks ka polĂŒtoobi tahkude arv. Saadud polĂŒtoopi Q nimetaÂŹtakse polĂŒtoobi P laiendiks kĂ”rgemas dimensioonis ning polĂŒtoobi Q minimaalset tahkude arvu nimetakakse polĂŒtoobi P laiendi keerukuseks, sellisel juhul optimaalsete lahendite hulk ei muutu. Tekib kĂŒsimus, millisel juhul on vĂ”imalik leida laiend Q, mille korral tahkude arv on polĂŒnomiaalne. Mittedeterministlik suhtluskeerukus mĂ€ngib olulist rolli tĂ”estamaks polĂŒtoopide laiendite keerukuse alampiiri. PolĂŒtoobile P vastava suhtluskeerukuse leidmine ning alamtĂ”kke tĂ”estamine vĂ€istavad vĂ”imalused leida laiend Q, mis ei oleks eksponentsiaalne. KĂ€esolevas töös keskendume me juhuslikele Boole'i funktsioonidele f, mille tihedusfunktsioon on p = p(n). Me pakume vĂ€lja vĂ€hima ĂŒlemtĂ”kke ning suurima alamtĂ”kke mittedeterministliku suhtluskeerukuse jaoks. Lisaks uurime me ka pedigree polĂŒtoobi graafi. Pedigree polĂŒtoop on rĂ€ndkaupmehe ĂŒlesande polĂŒtoobi laiend, millel on kombinatoorne struktuur. PolĂŒtoobi graafi vĂ”ib vaadelda kui abstraktset graafi ning see annab informatsiooni polĂŒtoobi omaduste kohta.The linear programming (LP for short) is a method for finding an optimal solution, such as minimum cost or maximum profit for a linear function subject to linear constraints. But having an exponential number of inequalities gives the exponential running time in solving linear program. A polytope, let's say P, represents the space of the feasible solution. One idea for decreasing the running time of the problem, is lifting the polytope P tho the higher dimensions with the goal of decresing the number of inequalities. The polytope in higher dimension, let's say Q, is the extension of the original polytope P and the minimum number of facets that Q can have is the extension complexity of P. Then the optimal solution of the problem over Q, gives the optimal solution over P. The natural question may raise is when is it possible to have an extension with a polynomial number of inequalities? Nondeterministic communication complexity is a powerful tool for proving lower bound on the extension complexity of a polytopes. Finding a suitable communication complexity problem corresponded to a polytope P and proving a linear lower bound for the nondeterministic communication complexity of it, will rule out all the attempts for finding sub-exponential size extension Q of P. In this thesis, we focus on the random Boolean functions f, with density p = p(n). We give tight upper and lower bounds for the nondeterministic communication complexity and parameters related to it. Also, we study the rank of fooling set matrix which is an important lower bound for nondeterministic communication complexity. Finally, we investigate the graph of the pedigree polytope. Pedigree polytope is an extension of TSP (traveling salesman problem; the most extensively studied problem in combinatorial optimization) polytopes with a nice combinatorial structure. The graph of a polytope can be regarded as an abstract graph and it reveals meaningful information about the properties of the polytope

    Subject Index Volumes 1–200

    Get PDF

    On cycles and independence in graphs

    Get PDF
    ï»żDas erste Fachkapitel ist der Berechnung von Kreispackungszahlen, d.h. der maximalen GrĂ¶ĂŸe kanten- bzw. eckendisjunkter Kreispackungen, gewidmet. Da diese Probleme bekanntermaßen sogar fĂŒr subkubische Graphen schwer sind, behandelt der erste Abschnitt die KomplexitĂ€t des Packens von Kreisen einer festen LĂ€nge l in Graphen mit Maximalgrad Delta. Dieses fĂŒr l=3 von Caprara und Rizzi gelöste Problem wird hier auf alle grĂ¶ĂŸeren KreislĂ€ngen l verallgemeinert. Der zweite Abschnitt beschreibt die Struktur von Graphen, fĂŒr die die Kreispackungszahlen einen vorgegebenen Abstand zur zyklomatischen Zahl haben. Die 2-zusammenhĂ€ngenden Graphen mit dieser Eigenschaft können jeweils durch Anwendung einer einfachen Erweiterungsregel auf eine endliche Menge von Graphen erzeugt werden. Aus diesem Strukturergebnis wird ein fpt-Algorithmus abgeleitet. Das zweite Fachkapitel handelt von der GrĂ¶ĂŸenordnung der minimalen Anzahl von KreislĂ€ngen in einem Hamiltongraph mit q Sehnen. Eine Familie von Beispielen zeigt, dass diese Unterschranke höchstens die Wurzel von q+1 ist. Dem Hauptsatz dieses Kapitels zufolge ist die Zahl der KreislĂ€ngen eines beliebigen Hamiltongraphen mit q Sehnen mindestens die Wurzel von 4/7*q. Der Beweis beruht auf einem Lemma von Faudree et al., demzufolge der Graph, der aus einem Weg mit Endecken x und y und q gleichlangen Sehnen besteht, x-y-Wege von mindestens q/3 verschiedenen LĂ€ngen enthĂ€lt. Der erste Abschnitt enthĂ€lt eine Korrektur des ursprĂŒnglich fehlerhaften Beweises und zusĂ€tzliche Schranken. Der zweite Abschnitt leitet daraus die Unterschranke fĂŒr die Anzahl der KreislĂ€ngen ab. Das letzte Fachkapitel behandelt Unterschranken fĂŒr den UnabhĂ€ngigkeitsquotienten, d.h. den Quotienten aus UnabhĂ€ngigkeitszahl und Ordnung eines Graphen, fĂŒr Graphen gegebener Dichte. In der Einleitung werden bestmögliche Schranken fĂŒr die Klasse aller Graphen sowie fĂŒr große zusammenhĂ€ngende Graphen aus bekannten Ergebnissen abgeleitet. Danach wird die Untersuchung auf durch das Verbot kleiner ungerader Kreise eingeschrĂ€nkte Graphenklassen ausgeweitet. Das Hauptergebnis des ersten Abschnitts ist eine Verallgemeinerung eines Ergebnisses von Heckman und Thomas, das die bestmögliche Schranke fĂŒr zusammenhĂ€ngende dreiecksfreie Graphen mit Durchschnittsgrad bis zu 10/3 impliziert und die extremalen Graphen charakterisiert. Der Rest der ersten beiden Abschnitte enthĂ€lt Vermutungen Ă€hnlichen Typs fĂŒr zusammenhĂ€ngende dreiecksfreie Graphen mit Durchschnittsgrad im Intervall [10/3, 54/13] und fĂŒr zusammenhĂ€ngende Graphen mit ungerader Taillenweite 7 mit Durchschnittsgrad bis zu 14/5. Der letzte Abschnitt enthĂ€lt analoge Beobachtungen zum Bipartitionsquotienten. Die Arbeit schließt mit Vermutungen zu Unterschranken und die zugehörigen Klassen extremaler Graphen fĂŒr den Bipartitionsquotienten.This thesis discusses several problems related to cycles and the independence number in graphs. Chapter 2 contains problems on independent sets of cycles. It is known that it is hard to compute the maximum cardinality of edge-disjoint and vertex-disjoint cycle packings, even if restricted to subcubic graphs. Therefore, the first section discusses the complexity of a simpler problem: packing cycles of fixed length l in graphs of maximum degree Delta. The results of Caprara and Rizzi, who have solved this problem for l=3 are generalised to arbitrary lengths. The second section describes the structure of graphs for which the edge-disjoint resp. vertex-disjoint cycle packing number differs from the cyclomatic number by a constant. The corresponding classes of 2-connected graphs can be obtained by a simple extension rules applied to a finite set of graphs. This result implies a fixed-parameter-tractability result for the edge-disjoint and vertex-disjoint cycle packing numbers. Chapter 3 contains an approximation of the minimum number of cycle lengths in a Hamiltonian graph with q chords. A family of examples shows that no more than the square root of q+1 can be guaranteed. The main result is that the square root of 4/7*q cycle lengths can be guaranteed. The proof relies on a lemma by Faudree et al., which states that the graph that contains a path with endvertices x and y and q chords of equal length contains paths between x and y of at least q/3 different lengths. The first section corrects the originally faulty proof and derives additional bounds. The second section uses these bounds to derive the lower bound on the size of the cycle spectrum. Chapter 4 focuses on lower bounds on the independence ratio, i.e. the quotient of independence number and order of a graph, for graphs of given density. In the introduction, best-possible bounds both for arbitrary graphs and large connected graphs are derived from known results. Therefore, the rest of this chapter considers classes of graphs defined by forbidding small odd cycles as subgraphs. The main result of the first section is a generalisation of a result of Heckman and Thomas that determines the best possible lower bound for connected triangle-free graphs with average degree at most 10/3 and characterises the extremal graphs. The rest of the chapter is devoted to conjectures with similar statements on connected triangle-free graphs of average degree in [10/3, 54/13] and on connected graphs of odd girth 7 with average degree up to 14/5, similar conjectures for the bipartite ratio, possible classes of extremal graphs for these conjectures, and observations in support of the conjectures

    SIMULATING SEISMIC WAVE PROPAGATION IN TWO-DIMENSIONAL MEDIA USING DISCONTINUOUS SPECTRAL ELEMENT METHODS

    Get PDF
    We introduce a discontinuous spectral element method for simulating seismic wave in 2- dimensional elastic media. The methods combine the flexibility of a discontinuous finite element method with the accuracy of a spectral method. The elastodynamic equations are discretized using high-degree of Lagrange interpolants and integration over an element is accomplished based upon the Gauss-Lobatto-Legendre integration rule. This combination of discretization and integration results in a diagonal mass matrix and the use of discontinuous finite element method makes the calculation can be done locally in each element. Thus, the algorithm is simplified drastically. We validated the results of one-dimensional problem by comparing them with finite-difference time-domain method and exact solution. The comparisons show excellent agreement
    corecore