89 research outputs found

    GEO-SPATIAL MODELING OF CARBON SEQUESTRATION ASSESSMENT IN DATE PALM, ABU DHABI: AN INTEGRATED APPROACH OF FIELDWORK, REMOTE SENSING, AND GIS

    Get PDF
    The United Arab Emirates (UAE) has undertaken huge efforts to green the desert and afforestation projects (planted mainly with date palms) hence, reducing its carbon footprint, which have never been accounted for, because of lack of implemented mechanisms and tools to assess the amount of biomass and carbon stock (CS) sequestered by plants in the country. The purpose of this dissertation is to implement a new approach towards assessing the carbon sequestered by date palm (DP) plantations in Abu Dhabi, in both their biomass compartment as well as the soils under beneath, using geospatial technologies (RS and GIS) assessed by field measurements. The methodology proposed in this dissertation relied on both fieldwork and labwork, besides the intensive use of geospatial technology including, digital image processing of multi-scale, multi-resolution satellite imagery as well as Geographical Information Systems (GIS) modelling. For detecting and mapping the DP, the research proposes a framework based on using multi-source/ multi-sensor data in a hierarchical integrated approach (HIA) to map DP plantations at different age stages: young, medium, and mature. The outcomes of the implemented approach were the creation of detailed and accurate maps of DP at three age stages. The overall accuracies for mixed-ages DP the value reached up to 94.5%, with an overall Kappa statistic estimated at 0.888 with total area of DP equal to 7,588.04 ha and the total number of DP planted in the study area counted an estimated number of 8,966,826 palms.The study showed that the correlation of mature DP class alone (\u3e10 years) with single bands was significant with shorwave infrared 1 (SWIR1) and shortwave infrared 2 (SWIR2), while the correlation was significant with all tested vegetation indices (VI) except for tasseled cap transformation index for brightness (TCB) and for greenness (TCG). By using different types of regression equations, tasseled cap transformation index for wetness (TCW) showed the strongest correlation using a second-order polynomial equation to estimate the biomass of mature DP with R² equal to 0.7643 and P value equal to 0.007. The exponential regression equation that uses renormalized difference vegetation index (RDVI) as RS predictor was the best single VI and had the strongest correlation among all RS variables of Landsat 8 OLI for AGB of non-mature DP, with an R2 value of 0.4987 and P value equal 0.00002. The findings of the dissertation work are promising and can be used to estimate the amount of biomass and carbon stock in DP plantations in the country as well as in arid land in general. Therefore, it can be applied to enhance the decision-making process on sustainable monitoring and management of carbon sequestration by date palms in other similar ecosystems. The research’s approach has never been developed elsewhere for date palms in arid areas

    APPLICATION OF MULTISPECTRAL IMAGES TO SEARCH FOR CONSTRUCTION OBJECTS ON THE SPECTRAL SIGNATURES BASE

    Get PDF
    The work is devoted to the study of Landsat-8 multispectral images of not high resolution using the spectral angle method on the base of spectral signatures libraries to detect objects under construction in an urban area. The physical basis of the research method is that all objects have different reflection coefficients depending on the wavelength. This property makes it possible to identify various substances by their spectral signatures. In the work, an automatic comparison of the curves of the spectral reflectivity of objects on a lowresolution space multispectral image was made to identify the identity of the characteristic energy absorption and reflection zones for detecting objects in the construction process. The article also describes the stages of image preprocessing, cross-track illumination correction of the image, atmospheric correction, and mathematical operations of bands transformation, which provide more opportunities for analysis and recognition of objects using a spectral study of a space image. The study accurately determines the presence or absence of the desired materials, since the search is based on the molecular structure of the substance. Also, the use of multispectral images allows you to analyze the entire city at the same time. The initial data was taken from a 2021 Landsat-8 satellite image with 11 bands, with a resolution of 30 meters, which was enhanced to 15 meters during pre-processing. The results of the search and detection of objects under construction in the city are given. The detection results can be used as input data for further in-depth analysis

    Soil organic carbon stocks in native forest of Argentina: a useful surrogate for mitigation and conservation planning under climate variability

    Get PDF
    Background The nationally determined contribution (NDC) presented by Argentina within the framework of the Paris Agreement is aligned with the decisions made in the context of the United Nations Framework Convention on Climate Change (UNFCCC) on the reduction of emissions derived from deforestation and forest degradation, as well as forest carbon conservation (REDD+). In addition, climate change constitutes one of the greatest threats to forest biodiversity and ecosystem services. However, the soil organic carbon (SOC) stocks of native forests have not been incorporated into the Forest Reference Emission Levels calculations and for conservation planning under climate variability due to a lack of information. The objectives of this study were: (i) to model SOC stocks to 30 cm of native forests at a national scale using climatic, topographic and vegetation as predictor variables, and (ii) to relate SOC stocks with spatial–temporal remotely sensed indices to determine biodiversity conservation concerns due to threats from high inter‑annual climate variability. Methods We used 1040 forest soil samples (0–30 cm) to generate spatially explicit estimates of SOC native forests in Argentina at a spatial resolution of approximately 200 m. We selected 52 potential predictive environmental covariates, which represent key factors for the spatial distribution of SOC. All covariate maps were uploaded to the Google Earth Engine cloud‑based computing platform for subsequent modelling. To determine the biodiversity threats from high inter‑annual climate variability, we employed the spatial–temporal satellite‑derived indices based on Enhanced Vegetation Index (EVI) and land surface temperature (LST) images from Landsat imagery. Results SOC model (0–30 cm depth) prediction accounted for 69% of the variation of this soil property across the whole native forest coverage in Argentina. Total mean SOC stock reached 2.81 Pg C (2.71–2.84 Pg C with a probability of 90%) for a total area of 460,790 km2, where Chaco forests represented 58.4% of total SOC stored, followed by Andean Patagonian forests (16.7%) and Espinal forests (10.0%). SOC stock model was fitted as a function of regional climate, which greatly influenced forest ecosystems, including precipitation (annual mean precipitation and precipitation of warmest quarter) and temperature (day land surface temperature, seasonality, maximum temperature of warmest month, month of maximum temperature, night land surface temperature, and monthly minimum temperature). Biodiversity was influenced by the SOC levels and the forest regions. Conclusions In the framework of the Kyoto Protocol and REDD+, information derived in the present work from the estimate of SOC in native forests can be incorporated into the annual National Inventory Report of Argentina to assist forest management proposals. It also gives insight into how native forests can be more resilient to reduce the impact of biodiversity loss.EEA Santa CruzFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Gaitan, Juan José. Universidad Nacional de Luján. Buenos Aires; Argentina.Fil: Gaitan, Juan José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Mastrangelo, Matias Enrique. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias. Grupo de Estudio de Agroecosistemas y Paisajes Rurales; Argentina.Fil: Mastrangelo, Matias Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Nosetto, Marcelo Daniel. Universidad Nacional de San Luis. Instituto de Matemática Aplicada San Luis. Grupo de Estudios Ambientales; Argentina.Fil: Nosetto, Marcelo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Villagra, Pablo Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA); Argentina.Fil: Villagra, Pablo Eugenio. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias; Argentina.Fil: Balducci, Ezequiel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Yuto; Argentina.Fil: Pinazo, Martín Alcides. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Montecarlo; Argentina.Fil: Eclesia, Roxana Paola. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná; Argentina.Fil: Von Wallis, Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Montecarlo; Argentina.Fil: Villarino, Sebastián. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias. Grupo de Estudio de Agroecosistemas y Paisajes Rurales; Argentina.Fil: Villarino, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Alaggia, Francisco Guillermo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Campo Anexo Villa Dolores; Argentina.Fil: Alaggia, Francisco Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Gonzalez-Polo, Marina. Universidad Nacional del Comahue; Argentina.Fil: Gonzalez-Polo, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. INIBIOMA; Argentina.Fil: Manrique, Silvana M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Energía No Convencional. CCT Salta‑Jujuy; Argentina.Fil: Meglioli, Pablo A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA); Argentina.Fil: Meglioli, Pablo A. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias; Argentina.Fil: Rodríguez‑Souilla, Julián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC); Argentina.Fil: Mónaco, Martín H. Ministerio de Ambiente y Desarrollo Sostenible. Dirección Nacional de Bosques; Argentina.Fil: Chaves, Jimena Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC); Argentina.Fil: Medina, Ariel. Ministerio de Ambiente y Desarrollo Sostenible. Dirección Nacional de Bosques; Argentina.Fil: Gasparri, Ignacio. Universidad Nacional de Tucumán. Instituto de Ecología Regional; Argentina.Fil: Gasparri, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Alvarez Arnesi, Eugenio. Universidad Nacional de Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina.Fil: Alvarez Arnesi, Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe; Argentina.Fil: Barral, María Paula. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias. Grupo de Estudio de Agroecosistemas y Paisajes Rurales; Argentina.Fil: Barral, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Von Müller, Axel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel Argentina.Fil: Pahr, Norberto Manuel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Montecarlo; Argentina.Fil: Uribe Echevarría, Josefina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Quimilí; Argentina.Fil: Fernandez, Pedro Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillá; Argentina.Fil: Fernandez, Pedro Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ecología Regional; Argentina.Fil: Morsucci, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA); Argentina.Fil: Morsucci, Marina. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias; Argentina.Fil: Lopez, Dardo Ruben. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Campo Anexo Villa Dolores; Argentina.Fil: Lopez, Dardo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Cellini, Juan Manuel. Universidad Nacional de la Plata (UNLP). Facultad de Ciencias Naturales y Museo. Laboratorio de Investigaciones en Maderas; Argentina.Fil: Alvarez, Leandro M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA); Argentina.Fil: Alvarez, Leandro M. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias; Argentina.Fil: Barberis, Ignacio Martín. Universidad Nacional de Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe; Argentina.Fil: Barberis, Ignacio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe; Argentina.Fil: Colomb, Hernán Pablo. Ministerio de Ambiente y Desarrollo Sostenible. Dirección Nacional de Bosques; Argentina.Fil: Colomb, Hernán. Administración de Parques Nacionales (APN). Parque Nacional Los Alerces; Argentina.Fil: La Manna, Ludmila. Universidad Nacional de la Patagonia San Juan Bosco. Centro de Estudios Ambientales Integrados (CEAI); Argentina.Fil: La Manna, Ludmila. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Barbaro, Sebastian Ernesto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Cerro Azul; Argentina.Fil: Blundo, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ecología Regional; Argentina.Fil: Blundo, Cecilia. Universidad Nacional de Tucumán. Tucumán; Argentina.Fil: Sirimarco, Marina Ximena. Universidad Nacional de Mar del Plata. Grupo de Estudio de Agroecosistemas y Paisajes Rurales (GEAP); Argentina.Fil: Sirimarco, Marina Ximena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Cavallero, Laura. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Campo Anexo Villa Dolores; Argentina.Fil: Zalazar, Gualberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA); Argentina.Fil: Zalazar, Gualberto. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias; Argentina.Fil: Martínez Pastur, Guillermo José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC); Argentina

    Pansharpened landsat 8 thermal-infrared data for improved land surface temperature characterization in a heterogeneous urban landscape

    Get PDF
    Challenges associated with adolescents are prevalent in South African societies. During the adolescence stage, children may become involved in deviant behaviour. Although a significant number of studies have focused on the factors that contribute to adolescents’ deviant behaviour, including parental factors, there is paucity of research specifically in rural communities. This study explores the contribution of parental factors to adolescents’ deviant behaviour in rural communities in South Africa. Guided by the qualitative approach, the present study makes use of semi-structured interviews to collect data and thematic analysis to analyse data

    The value of using landsat 8 indices to describe large herbivore distribution

    Get PDF
    A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg in fulfillment of the requirements for the degree of Masters in Science.Satellite imagery and remote sensing techniques provide a way to collect data over large temporal and spatial scales, and build indices that gauge ecological variables. These indices can explain the distribution of animals in their environment. In this study I compare the ability of various indices derived from Landsat 8, to reliably predict locations of different large herbivore species across diverse habitats. The study was undertaken in the Kgaswane Mountain Reserve, North West Province, South Africa. Daily locations of two herds of sable antelope (Hippotragus niger) and one herd of eland (Tragelaphus oryx) were used. One sable antelope herd (vlei herd) occupied a grassland plateau with a wetland and the other sable antelope herd (woodland herd), shared the wooded area at the base of the mountains with the eland herd. I described vegetation communities, burnt areas, geology and soil templates at animal locations during foraging bouts in the dry season; coinciding with the times of the Landsat images. The overall aim of this study was to see whether an index or a combination of indices could better describe animal locations than the normally used NDVI. I calculated a number of indices, and compared their predictive ability to define areas used by the study animals. Specifically, I compared the Normalised Difference Vegetation Index (NDVI) to Soil Adjusted Vegetation Index (SAVI), Visible Atmospherically Resistant Index (VARIgreen), Green Atmospherically Resistant Index (GARI), Normalised Difference Water Index (NDWI), a proxy for soil moisture; and mineral composite indices assessing clay minerals, ferrous minerals and iron oxide. I chose these indices as they describe the basic characteristics of an ecologically functioning unit. The locations of one of the sable antelope herds, located in grassland areas underlined by quartzite, were best described by NDVI, SAVI and VARIgreen. The locations of the other sable antelope herd, occurring in an open wooded area with shallow sandy soils on norite and quartzite, were best described by clay minerals and GARI. Eland locations, found in woodland areas characterised by deep norite soils, were best described by a combination of iron oxide, NDVI and SAVI. Therefore, NDVI proved to be an adequate indicator in open grassland areas, where it could be interchanged with SAVI, and improved by VARIgreen. In closed woodlands NDVI, SAVI and NDWI could all be used to describe browser locations. NDVI was not a suitable index when it came to describe locations of a grazer in a woodland/grassland matrix. However, it is important to keep in mind that my results pertain only to one dry season and two herbivore species, and therefore further studies would be needed to be able to generalise the results further.MT201

    Early Detection of Bark Beetle Attack Using Remote Sensing and Machine Learning: A Review

    Full text link
    Bark beetle outbreaks can result in a devastating impact on forest ecosystem processes, biodiversity, forest structure and function, and economies. Accurate and timely detection of bark beetle infestations is crucial to mitigate further damage, develop proactive forest management activities, and minimize economic losses. Incorporating remote sensing (RS) data with machine learning (ML) (or deep learning (DL)) can provide a great alternative to the current approaches that rely on aerial surveys and field surveys, which are impractical over vast geographical regions. This paper provides a comprehensive review of past and current advances in the early detection of bark beetle-induced tree mortality from three key perspectives: bark beetle & host interactions, RS, and ML/DL. We parse recent literature according to bark beetle species & attack phases, host trees, study regions, imagery platforms & sensors, spectral/spatial/temporal resolutions, spectral signatures, spectral vegetation indices (SVIs), ML approaches, learning schemes, task categories, models, algorithms, classes/clusters, features, and DL networks & architectures. This review focuses on challenging early detection, discussing current challenges and potential solutions. Our literature survey suggests that the performance of current ML methods is limited (less than 80%) and depends on various factors, including imagery sensors & resolutions, acquisition dates, and employed features & algorithms/networks. A more promising result from DL networks and then the random forest (RF) algorithm highlighted the potential to detect subtle changes in visible, thermal, and short-wave infrared (SWIR) spectral regions.Comment: Under review, 33 pages, 5 figures, 8 Table

    Bridging Arctic pathways: integrating hydrology, geomorphology and remote sensing in the North

    Get PDF
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2015This work presents improved approaches for integrating patterns and processes within hydrology, geomorphology, ecology and permafrost on Arctic landscapes. Emphasis was placed on addressing fundamental interdisciplinary questions using robust, repeatable methods. Water tracks were examined in the foothills of the Brooks Range to ascertain their role within the range of features that transport water in Arctic regions. Classes of water tracks were developed using multiple factor analysis based on their geomorphic, soil and vegetation characteristics. These classes were validated to verify that they were repeatable. Water tracks represented a broad spectrum of patterns and processes primarily driven by surficial geology. This research demonstrated a new approach to better understanding regional hydrological patterns. The locations of the water track classes were mapped using a combination method where intermediate processing of spectral classifications, texture and topography were fed into random forests to identify the water track classes. Overall, the water track classes were best visualized where they were the most discrete from the background landscape in terms of both shape and content. Issues with overlapping and imbalances between water track classes were the biggest challenges. Resolving the spatial locations of different water tracks represents a significant step forward for understanding periglacial landscape dynamics. Leaf area index (LAI) calculations using the gap-method were optimized using normalized difference vegetation index (NDVI) as input for both WorldView-2 and Landsat-7 imagery. The study design used groups to separate the effects of surficial drainage networks and the relative magnitude of change in NDVI over time. LAI values were higher for the WorldView-2 data and for each sensor and group combination the distribution of LAI values was unique. This study indicated that there are tradeoffs between increased spatial resolution and the ability to differentiate landscape features versus the increase in variability when using NDVI for LAI calculations. The application of geophysical methods for permafrost characterization in Arctic road design and engineering was explored for a range of conditions including gravel river bars, burned tussock tundra and ice-wedge polygons. Interpretations were based on a combination of Directcurrent resistivity - electrical resistivity tomography (DCR-ERT), cryostratigraphic information via boreholes and geospatial (aerial photographs & digital elevation models) data. The resistivity data indicated the presence/absence of permafrost; location and depth of massive ground ice; and in some conditions changes in ice content. The placement of the boreholes strongly influenced how geophysical data can be interpreted for permafrost conditions and should be carefully considered during data collection strategies

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations
    • …
    corecore