296 research outputs found

    How to measure the relevance of a retargeting approach?

    No full text
    International audienceMost cell phones today can receive and display video content. Nonetheless, we are still significantly behind the point where premium made for mobile content is mainstream, largely available, and affordable. Significant issues must be overcome. The small screen size is one of them. Indeed, the direct transfer of conventional contents (not specifically shot for mobile devices) will provide a video in which the main characters or objects of interest may become indistinguishable from the rest of the scene. Therefore, it is required to retarget the content. Different solutions exist, either based on distortion of the image, on removal of redundant areas, or cropping. The most efficient ones are based on dynamic adaptation of the cropping window. They significantly improve the viewing experience by zooming in the regions of interest. Currently, there is no common agreement on how to compare different solutions. A retargeting metric is proposed in order to gauge its quality. Eye-tracking experiments, zooming effect through coverage ratio and temporal consistency are introduced and discussed

    Contextual cropping and scaling of TV productions

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-011-0804-3. Copyright @ Springer Science+Business Media, LLC 2011.In this paper, an application is presented which automatically adapts SDTV (Standard Definition Television) sports productions to smaller displays through intelligent cropping and scaling. It crops regions of interest of sports productions based on a smart combination of production metadata and systematic video analysis methods. This approach allows a context-based composition of cropped images. It provides a differentiation between the original SD version of the production and the processed one adapted to the requirements for mobile TV. The system has been comprehensively evaluated by comparing the outcome of the proposed method with manually and statically cropped versions, as well as with non-cropped versions. Envisaged is the integration of the tool in post-production and live workflows

    A Computational Framework for Vertical Video Editing

    Get PDF
    International audienceVertical video editing is the process of digitally editing the image within the frame as opposed to horizontal video editing, which arranges the shots along a timeline. Vertical editing can be a time-consuming and error-prone process when using manual key-framing and simple interpolation. In this paper, we present a general framework for automatically computing a variety of cinematically plausible shots from a single input video suitable to the special case of live performances. Drawing on working practices in traditional cinematography, the system acts as a virtual camera assistant to the film editor, who can call novel shots in the edit room with a combination of high-level instructions and manually selected keyframes

    Image resizing with minimum distortion

    Get PDF
    Displays became cheap and were combined with many devices, like camera, mobile, and so on…, so there has been an increased interest on resizing methods to make the image suitable and fill any screen size. Common and known methods like cropping or resampling can cause undesirable effects such as: losses in information or distortion in perception. Recently, content-aware image resizing methods have been proposed to get rid of these problems and produce exceptional results. Seam-carving produced by Avidan and Shamir has gained attention as an effective solution. This paper discussed about this method and used it to resize (minimize and maximize) four colored images vertically and horizontally respectively, and maintained the main features of the images by deleting or repeating only the uninfluenced features. The energy map was calculated that described the basic and influential details of the image using energy function. But instead of gradient function (as in Avidan and Shamir) entropy function was used to compute the energy of the images. A vertical or a horizontal seam of pixels with minimum energy values was either deleted or inserted to resize the image. Good results were obtained especially when the image contains spaces within its details. The work was programmed using Matlab2018a

    Analysis and Retargeting of Ball Sports Video

    Full text link

    Motion-based video retargeting with optimized crop-and-warp

    Full text link
    • …
    corecore