123 research outputs found

    Multi-spectral palmprint recognition based on oriented multiscale log-Gabor filters

    Get PDF
    Among several palmprint recognition methods proposed recently, coding-based approaches using multi-spectral palmprint images are attractive owing to their high recognition rates. Aiming to further improve the performance of these approaches, this paper presents a novel multi-spectral palmprint recognition approach based on oriented multiscale log-Gabor filters. The proposed method aims to enhance the recognition performances by proposing novel solutions at three stages of the recognition process. Inspired by the bitwise competitive coding, the feature extraction employs a multi-resolution log-Gabor filtering where the final feature map is composed of the winning codes of the lowest filters’ bank response. The matching process employs a bitwise Hamming distance and Kullback–Leibler divergence as novel metrics to enable an efficient capture of the intra- and inter-similarities between palmprint feature maps. Finally, the decision stage is carried pout using a fusion of the scores generated from different spectral bands to reduce overlapping. In addition, a fusion of the feature maps through two proposed novel feature fusion techniques to allow us to eliminate the inherent redundancy of the features of neighboring spectral bands is also proposed. The experimental results obtained using the multi-spectral palmprint database MS-PolyU have shown that the proposed method achieves high accuracy in mono-spectral and multi-spectral recognition performances for both verification and identification modes; and also outperforms the state-of-the-art methods

    Palmprint identification using an ensemble of sparse representations

    Get PDF
    Among various palmprint identification methods proposed in the literature, sparse representation for classification (SRC) is very attractive offering high accuracy. Although SRC has good discriminative ability, its performance strongly depends on the quality of the training data. In particular, SRC suffers from two major problems: lack of training samples per class and large intra-class variations. In fact, palmprint images not only contain identity information but they also have other information, such as illumination and geometrical distortions due to the unconstrained conditions and the movement of the hand. In this case, the sparse representation assumption may not hold well in the original space since samples from different classes may be considered from the same class. This paper aims to enhance palmprint identification performance through SRC by proposing a simple yet efficient method based on an ensemble of sparse representations through an ensemble of discriminative dictionaries satisfying SRC assumption. The ensemble learning has the advantage to reduce the sensitivity due to the limited size of the training data and is performed based on random subspace sampling over 2D-PCA space while keeping the image inherent structure and information. In order to obtain discriminative dictionaries satisfying SRC assumption, a new space is learned by minimizing and maximizing the intra-class and inter-class variations using 2D-LDA. Extensive experiments are conducted on two publicly available palmprint data sets: multispectral and PolyU. Obtained results showed very promising results compared with both state-of-the-art holistic and coding methods. Besides these findings, we provide an empirical analysis of the parameters involved in the proposed technique to guide the neophyte. 2018 IEEE.This work was supported by the National Priority Research Program from the Qatar National Research Fund under Grant 6-249-1-053. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the Qatar National Research Fund or Qatar University.Scopu

    Iris Recognition Using Scattering Transform and Textural Features

    Full text link
    Iris recognition has drawn a lot of attention since the mid-twentieth century. Among all biometric features, iris is known to possess a rich set of features. Different features have been used to perform iris recognition in the past. In this paper, two powerful sets of features are introduced to be used for iris recognition: scattering transform-based features and textural features. PCA is also applied on the extracted features to reduce the dimensionality of the feature vector while preserving most of the information of its initial value. Minimum distance classifier is used to perform template matching for each new test sample. The proposed scheme is tested on a well-known iris database, and showed promising results with the best accuracy rate of 99.2%

    Deep multimodal biometric recognition using contourlet derivative weighted rank fusion with human face, fingerprint and iris images

    Get PDF
    The goal of multimodal biometric recognition system is to make a decision by identifying their physiological behavioural traits. Nevertheless, the decision-making process by biometric recognition system can be extremely complex due to high dimension unimodal features in temporal domain. This paper explains a deep multimodal biometric system for human recognition using three traits, face, fingerprint and iris. With the objective of reducing the feature vector dimension in the temporal domain, first pre-processing is performed using Contourlet Transform Model. Next, Local Derivative Ternary Pattern model is applied to the pre-processed features where the feature discrimination power is improved by obtaining the coefficients that has maximum variation across pre-processed multimodality features, therefore improving recognition accuracy. Weighted Rank Level Fusion is applied to the extracted multimodal features, that efficiently combine the biometric matching scores from several modalities (i.e. face, fingerprint and iris). Finally, a deep learning framework is presented for improving the recognition rate of the multimodal biometric system in temporal domain. The results of the proposed multimodal biometric recognition framework were compared with other multimodal methods. Out of these comparisons, the multimodal face, fingerprint and iris fusion offers significant improvements in the recognition rate of the suggested multimodal biometric system

    An Extensive Review on Spectral Imaging in Biometric Systems: Challenges and Advancements

    Full text link
    Spectral imaging has recently gained traction for face recognition in biometric systems. We investigate the merits of spectral imaging for face recognition and the current challenges that hamper the widespread deployment of spectral sensors for face recognition. The reliability of conventional face recognition systems operating in the visible range is compromised by illumination changes, pose variations and spoof attacks. Recent works have reaped the benefits of spectral imaging to counter these limitations in surveillance activities (defence, airport security checks, etc.). However, the implementation of this technology for biometrics, is still in its infancy due to multiple reasons. We present an overview of the existing work in the domain of spectral imaging for face recognition, different types of modalities and their assessment, availability of public databases for sake of reproducible research as well as evaluation of algorithms, and recent advancements in the field, such as, the use of deep learning-based methods for recognizing faces from spectral images

    Palmprint Identification Based on Generalization of IrisCode

    Get PDF
    The development of accurate and reliable security systems is a matter of wide interest, and in this context biometrics is seen as a highly effective automatic mechanism for personal identification. Among biometric technologies, IrisCode developed by Daugman in 1993 is regarded as a highly accurate approach, being able to support real-time personal identification of large databases. Since 1993, on the top of IrisCode, different coding methods have been proposed for iris and fingerprint identification. In this research, I extend and generalize IrisCode for real-time secure palmprint identification. PalmCode, the first coding method for palmprint identification developed by me in 2002, directly applied IrisCode to extract phase information of palmprints as features. However, I observe that the PalmCodes from the different palms are similar, having many 45o streaks. Such structural similarities in the PalmCodes of different palms would reduce the individuality of PalmCodes and the performance of palmprint identification systems. To reduce the correlation between PalmCodes, in this thesis, I employ multiple elliptical Gabor filters with different orientations to compute different PalmCodes and merge them to produce a single feature, called Fusion Code. Experimental results demonstrate that Fusion Code performs better than PalmCode. Based on the results of Fusion Code, I further identify that the orientation fields of palmprints are powerful features. Consequently, Competitive Code, which uses real parts of six Gabor filters to estimate the orientation fields, is developed. To embed the properties of IrisCode, such as high speed matching, in Competitive Code, a novel coding scheme and a bitwise angular distance are proposed. Experimental results demonstrate that Competitive Code is much more effective than other palmprint algorithms. Although many coding methods have been developed based on IrisCode for iris and palmprint identification, we lack a detailed analysis of IrisCode. One of the aims of this research is to provide such analysis as a way of better understanding IrisCode, extending the coarse phase representation to a precise phase representation, and uncovering the relationship between IrisCode and other coding methods. This analysis demonstrates that IrisCode is a clustering process with four prototypes; the locus of a Gabor function is a two-dimensional ellipse with respect to a phase parameter and the bitwise hamming distance can be regarded as a bitwise angular distance. In this analysis, I also point out that the theoretical evidence of the imposter binomial distribution of IrisCode is incomplete. I use this analysis to develop a precise phase representation which can enhance iris recognition accuracy and to relate IrisCode and other coding methods. By making use of this analysis, principal component analysis and simulated annealing, near optimal filters for palmprint identification are sought. The near optimal filters perform better than Competitive Code in term of d’ index. Identical twins having the closest genetics-based relationship are expected to have maximum similarity in their biometrics. Classifying identical twins is a challenging problem for some automatic biometric systems. Palmprint has been studied for personal identification for many years. However, genetically identical palmprints have not been studied. I systemically examine Competitive Code on genetically identical palmprints for automatic personal identification and to uncover the genetically related palmprint features. The experimental results show that the three principal lines and some portions of weak lines are genetically related features but our palms still contain rich genetically unrelated features for classifying identical twins. As biometric systems are vulnerable to replay, database and brute-force attacks, such potential attacks must be analyzed before they are massively deployed in security systems. I propose projected multinomial distribution for studying the probability of successfully using brute-force attacks to break into a palmprint system based on Competitive Code. The proposed model indicates that it is computationally infeasible to break into the palmprint system using brute-force attacks. In addition to brute-force attacks, I address the other three security issues: template re-issuances, also called cancellable biometrics, replay attacks, and database attacks. A random orientation filter bank (ROFB) is used to generate cancellable Competitive Codes for templates re-issuances. Secret messages are hidden in templates to prevent replay and database attacks. This technique can be regarded as template watermarking. A series of analyses is provided to evaluate the security levels of the measures
    • …
    corecore