580 research outputs found

    Recent Advances of Manifold Regularization

    Get PDF
    Semi-supervised learning (SSL) that can make use of a small number of labeled data with a large number of unlabeled data to produce significant improvement in learning performance has been received considerable attention. Manifold regularization is one of the most popular works that exploits the geometry of the probability distribution that generates the data and incorporates them as regularization terms. There are many representative works of manifold regularization including Laplacian regularization (LapR), Hessian regularization (HesR) and p-Laplacian regularization (pLapR). Based on the manifold regularization framework, many extensions and applications have been reported. In the chapter, we review the LapR and HesR, and we introduce an approximation algorithm of graph p-Laplacian. We study several extensions of this framework for pairwise constraint, p-Laplacian learning, hypergraph learning, etc

    Semantic 3D Reconstruction with Finite Element Bases

    Full text link
    We propose a novel framework for the discretisation of multi-label problems on arbitrary, continuous domains. Our work bridges the gap between general FEM discretisations, and labeling problems that arise in a variety of computer vision tasks, including for instance those derived from the generalised Potts model. Starting from the popular formulation of labeling as a convex relaxation by functional lifting, we show that FEM discretisation is valid for the most general case, where the regulariser is anisotropic and non-metric. While our findings are generic and applicable to different vision problems, we demonstrate their practical implementation in the context of semantic 3D reconstruction, where such regularisers have proved particularly beneficial. The proposed FEM approach leads to a smaller memory footprint as well as faster computation, and it constitutes a very simple way to enable variable, adaptive resolution within the same model

    Place recognition: An Overview of Vision Perspective

    Full text link
    Place recognition is one of the most fundamental topics in computer vision and robotics communities, where the task is to accurately and efficiently recognize the location of a given query image. Despite years of wisdom accumulated in this field, place recognition still remains an open problem due to the various ways in which the appearance of real-world places may differ. This paper presents an overview of the place recognition literature. Since condition invariant and viewpoint invariant features are essential factors to long-term robust visual place recognition system, We start with traditional image description methodology developed in the past, which exploit techniques from image retrieval field. Recently, the rapid advances of related fields such as object detection and image classification have inspired a new technique to improve visual place recognition system, i.e., convolutional neural networks (CNNs). Thus we then introduce recent progress of visual place recognition system based on CNNs to automatically learn better image representations for places. Eventually, we close with discussions and future work of place recognition.Comment: Applied Sciences (2018
    • …
    corecore