635 research outputs found

    SPECTRA: Secure Power Efficient Clustered Topology Routing Algorithm

    Get PDF
    Wireless Sensor Networks (WSNs) have emerged as one of the hottest fields today due to their low-cost, self-organizing behavior, sensing ability in harsh environments, and their large application scope. One of the most challenging topics in WSNs is security. In some applications it is critical to provide confidentiality and authentication in order to prevent information from being compromised. However, providing key management for confidentiality and authentication is difficult due to the ad hoc nature, intermittent connectivity, and resource limitations of the network. Though traditional public keybased security protocols do exist, they need large memory bandwidths and complex algorithms, and are thus unsuitable for WSNs. Current solutions to the security issue in WSNs were created with only authentication and confidentiality in mind. This is far from optimal, because routing and security are closely correlated. Routing and security are alike because similar steps are taken in order to achieve these functions within a given network. Therefore, security and routing can be combined together in a cross-layer design, reducing the consumption of resources. The focus of this work is on the integration of routing and key management to provide an energy efficient security and routing solution. Towards this goal, this work proposes a security protocol that encompasses the following features: integration of security and routing, dynamic security, robust re-keying, low-complexity, and dual levels of encryption. This work combines all the robust features of current security implementations while adding additional features like dual layer encryption, resulting in an extremely efficient security protocol

    Software based deployment of encryption keys in wireless sensor networks.

    Get PDF
    Sensor networks are just in their infancy. Their use will continue to grow as the technology becomes cheaper and more efficient. A current shortcoming with sensor networks is the inability to efficiently provide secure communications. As sensor networks are deployed to monitor and control systems, the security of communications will become a more important. This thesis proposes a new approach to key establishment and renewal through the use of point-to-point keys and software verification and validation to ensure the integrity of two nodes. Sensor networks exist on limited resources, so power efficiency is a concern. The proposed protocol allows for the use of small keys instead of large pre-distributed keys. This thesis explores the design and implementation of a new point-to-point key generation and renewal algorithm. The main contribution is the development of an algorithm that utilizes a software integrity check to ensure the validity of a node. The thesis also utilizes a simulated sensor network to test and validate the new software algorithm

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Key management for wireless sensor network security

    Get PDF
    Wireless Sensor Networks (WSNs) have attracted great attention not only in industry but also in academia due to their enormous application potential and unique security challenges. A typical sensor network can be seen as a combination of a number of low-cost sensor nodes which have very limited computation and communication capability, memory space, and energy supply. The nodes are self-organized into a network to sense or monitor surrounding information in an unattended environment, while the self-organization property makes the networks vulnerable to various attacks.Many cryptographic mechanisms that solve network security problems rely directly on secure and efficient key management making key management a fundamental research topic in the field of WSNs security. Although key management for WSNs has been studied over the last years, the majority of the literature has focused on some assumed vulnerabilities along with corresponding countermeasures. Specific application, which is an important factor in determining the feasibility of the scheme, has been overlooked to a large extent in the existing literature.This thesis is an effort to develop a key management framework and specific schemes for WSNs by which different types of keys can be established and also can be distributed in a self-healing manner; explicit/ implicit authentication can be integrated according to the security requirements of expected applications. The proposed solutions would provide reliable and robust security infrastructure for facilitating secure communications in WSNs.There are five main parts in the thesis. In Part I, we begin with an introduction to the research background, problems definition and overview of existing solutions. From Part II to Part IV, we propose specific solutions, including purely Symmetric Key Cryptography based solutions, purely Public Key Cryptography based solutions, and a hybrid solution. While there is always a trade-off between security and performance, analysis and experimental results prove that each proposed solution can achieve the expected security aims with acceptable overheads for some specific applications. Finally, we recapitulate the main contribution of our work and identify future research directions in Part V

    Lightweight wireless network authentication scheme for constrained oracle sensors

    Get PDF
    x, 212 leaves : ill. (some col.) ; 29 cmIncludes abstract and appendices.Includes bibliographical references (leaves 136-147).With the significant increase in the dependence of contextual data from constrained IoT, the blockchain has been proposed as a possible solution to address growing concerns from organizations. To address this, the Lightweight Blockchain Authentication for Constrained Sensors (LBACS) scheme was proposed and evaluated using quantitative and qualitative methods. LBACS was designed with constrained Wireless Sensor Networks (WSN) in mind and independent of a blockchain implementation. It asserts the authentication and provenance of constrained IoT on the blockchain utilizing a multi-signature approach facilitated by symmetric and asymmetric methods and sufficient considerations for key and certificate registry management. The metrics, threat assessment and comparison to existing WSN authentication schemes conducted asserted the pragmatic use of LBACS to provide authentication, blockchain provenance, integrity, auditable, revocation, weak backward and forward secrecy and universal forgeability. The research has several implications for the ubiquitous use of IoT and growing interest in the blockchain

    A secure communication framework for wireless sensor networks

    Get PDF
    Today, wireless sensor networks (WSNs) are no longer a nascent technology and future networks, especially Cyber-Physical Systems (CPS) will integrate more sensor-based systems into a variety of application scenarios. Typical application areas include medical, environmental, military, and commercial enterprises. Providing security to this diverse set of sensor-based applications is necessary for the healthy operations of the overall system because untrusted entities may target the proper functioning of applications and disturb the critical decision-making processes by injecting false information into the network. One way to address this issue is to employ en-route-filtering-based solutions utilizing keys generated by either static or dynamic key management schemes in the WSN literature. However, current schemes are complicated for resource-constrained sensors as they utilize many keys and more importantly as they transmit many keying messages in the network, which increases the energy consumption of WSNs that are already severely limited in the technical capabilities and resources (i.e., power, computational capacities, and memory) available to them. Nonetheless, further improvements without too much overhead are still possible by sharing a dynamically created cryptic credential. Building upon this idea, the purpose of this thesis is to introduce an efficient and secure communication framework for WSNs. Specifically, three protocols are suggested as contributions using virtual energies and local times onboard the sensors as dynamic cryptic credentials: (1) Virtual Energy-Based Encryption and Keying (VEBEK); (2) TIme-Based DynamiC Keying and En-Route Filtering (TICK); (3) Secure Source-Based Loose Time Synchronization (SOBAS) for WSNs.Ph.D.Committee Chair: Copeland, John; Committee Co-Chair: Beyah, Raheem; Committee Member: Li, Geoffrey; Committee Member: Owen, Henry; Committee Member: Zegura, Ellen; Committee Member: Zhang, Fumi
    • …
    corecore