263 research outputs found

    Improved Deterministic Connectivity in Massively Parallel Computation

    Get PDF
    A long line of research about connectivity in the Massively Parallel Computation model has culminated in the seminal works of Andoni et al. [FOCS\u2718] and Behnezhad et al. [FOCS\u2719]. They provide a randomized algorithm for low-space MPC with conjectured to be optimal round complexity O(log D + log log_{m/n} n) and O(m) space, for graphs on n vertices with m edges and diameter D. Surprisingly, a recent result of Coy and Czumaj [STOC\u2722] shows how to achieve the same deterministically. Unfortunately, however, their algorithm suffers from large local computation time. We present a deterministic connectivity algorithm that matches all the parameters of the randomized algorithm and, in addition, significantly reduces the local computation time to nearly linear. Our derandomization method is based on reducing the amount of randomness needed to allow for a simpler efficient search. While similar randomness reduction approaches have been used before, our result is not only strikingly simpler, but it is the first to have efficient local computation. This is why we believe it to serve as a starting point for the systematic development of computation-efficient derandomization approaches in low-memory MPC

    Derandomizing Local Distributed Algorithms under Bandwidth Restrictions

    Get PDF
    This paper addresses the cornerstone family of local problems in distributed computing, and investigates the curious gap between randomized and deterministic solutions under bandwidth restrictions. Our main contribution is in providing tools for derandomizing solutions to local problems, when the n nodes can only send O(log n)-bit messages in each round of communication. We combine bounded independence, which we show to be sufficient for some algorithms, with the method of conditional expectations and with additional machinery, to obtain the following results. First, we show that in the Congested Clique model, which allows all-to-all communication, there is a deterministic maximal independent set (MIS) algorithm that runs in O(log^2 Delta) rounds, where Delta is the maximum degree. When Delta=O(n^(1/3)), the bound improves to O(log Delta). Adapting the above to the CONGEST model gives an O(D log^2 n)-round deterministic MIS algorithm, where D is the diameter of the graph. Apart from a previous unproven claim of a O(D log^3 n)-round algorithm, the only known deterministic solutions for the CONGEST model are a coloring-based O(Delta + log^* n)-round algorithm, where Delta is the maximal degree in the graph, and a 2^O(sqrt(log n log log n))-round algorithm, which is super-polylogarithmic in n. In addition, we deterministically construct a (2k-1)-spanner with O(kn^(1+1/k) log n) edges in O(k log n) rounds in the Congested Clique model. For comparison, in the more stringent CONGEST model, where the communication graph is identical to the input graph, the best deterministic algorithm for constructing a (2k-1)-spanner with O(kn^(1+1/k)) edges runs in O(n^(1-1/k)) rounds

    Distributed local approximation algorithms for maximum matching in graphs and hypergraphs

    Full text link
    We describe approximation algorithms in Linial's classic LOCAL model of distributed computing to find maximum-weight matchings in a hypergraph of rank rr. Our main result is a deterministic algorithm to generate a matching which is an O(r)O(r)-approximation to the maximum weight matching, running in O~(rlogΔ+log2Δ+logn)\tilde O(r \log \Delta + \log^2 \Delta + \log^* n) rounds. (Here, the O~()\tilde O() notations hides polyloglog Δ\text{polyloglog } \Delta and polylog r\text{polylog } r factors). This is based on a number of new derandomization techniques extending methods of Ghaffari, Harris & Kuhn (2017). As a main application, we obtain nearly-optimal algorithms for the long-studied problem of maximum-weight graph matching. Specifically, we get a (1+ϵ)(1+\epsilon) approximation algorithm using O~(logΔ/ϵ3+polylog(1/ϵ,loglogn))\tilde O(\log \Delta / \epsilon^3 + \text{polylog}(1/\epsilon, \log \log n)) randomized time and O~(log2Δ/ϵ4+logn/ϵ)\tilde O(\log^2 \Delta / \epsilon^4 + \log^*n / \epsilon) deterministic time. The second application is a faster algorithm for hypergraph maximal matching, a versatile subroutine introduced in Ghaffari et al. (2017) for a variety of local graph algorithms. This gives an algorithm for (2Δ1)(2 \Delta - 1)-edge-list coloring in O~(log2Δlogn)\tilde O(\log^2 \Delta \log n) rounds deterministically or O~((loglogn)3)\tilde O( (\log \log n)^3 ) rounds randomly. Another consequence (with additional optimizations) is an algorithm which generates an edge-orientation with out-degree at most (1+ϵ)λ\lceil (1+\epsilon) \lambda \rceil for a graph of arboricity λ\lambda; for fixed ϵ\epsilon this runs in O~(log6n)\tilde O(\log^6 n) rounds deterministically or O~(log3n)\tilde O(\log^3 n ) rounds randomly

    Small Cuts and Connectivity Certificates: A Fault Tolerant Approach

    Get PDF
    We revisit classical connectivity problems in the {CONGEST} model of distributed computing. By using techniques from fault tolerant network design, we show improved constructions, some of which are even "local" (i.e., with O~(1) rounds) for problems that are closely related to hard global problems (i.e., with a lower bound of Omega(Diam+sqrt{n}) rounds). Distributed Minimum Cut: Nanongkai and Su presented a randomized algorithm for computing a (1+epsilon)-approximation of the minimum cut using O~(D +sqrt{n}) rounds where D is the diameter of the graph. For a sufficiently large minimum cut lambda=Omega(sqrt{n}), this is tight due to Das Sarma et al. [FOCS \u2711], Ghaffari and Kuhn [DISC \u2713]. - Small Cuts: A special setting that remains open is where the graph connectivity lambda is small (i.e., constant). The only lower bound for this case is Omega(D), with a matching bound known only for lambda <= 2 due to Pritchard and Thurimella [TALG \u2711]. Recently, Daga, Henzinger, Nanongkai and Saranurak [STOC \u2719] raised the open problem of computing the minimum cut in poly(D) rounds for any lambda=O(1). In this paper, we resolve this problem by presenting a surprisingly simple algorithm, that takes a completely different approach than the existing algorithms. Our algorithm has also the benefit that it computes all minimum cuts in the graph, and naturally extends to vertex cuts as well. At the heart of the algorithm is a graph sampling approach usually used in the context of fault tolerant (FT) design. - Deterministic Algorithms: While the existing distributed minimum cut algorithms are randomized, our algorithm can be made deterministic within the same round complexity. To obtain this, we introduce a novel definition of universal sets along with their efficient computation. This allows us to derandomize the FT graph sampling technique, which might be of independent interest. - Computation of all Edge Connectivities: We also consider the more general task of computing the edge connectivity of all the edges in the graph. In the output format, it is required that the endpoints u,v of every edge (u,v) learn the cardinality of the u-v cut in the graph. We provide the first sublinear algorithm for this problem for the case of constant connectivity values. Specifically, by using the recent notion of low-congestion cycle cover, combined with the sampling technique, we compute all edge connectivities in poly(D) * 2^{O(sqrt{log n log log n})} rounds. Sparse Certificates: For an n-vertex graph G and an integer lambda, a lambda-sparse certificate H is a subgraph H subseteq G with O(lambda n) edges which is lambda-connected iff G is lambda-connected. For D-diameter graphs, constructions of sparse certificates for lambda in {2,3} have been provided by Thurimella [J. Alg. \u2797] and Dori [PODC \u2718] respectively using O~(D) number of rounds. The problem of devising such certificates with o(D+sqrt{n}) rounds was left open by Dori [PODC \u2718] for any lambda >= 4. Using connections to fault tolerant spanners, we considerably improve the round complexity for any lambda in [1,n] and epsilon in (0,1), by showing a construction of (1-epsilon)lambda-sparse certificates with O(lambda n) edges using only O(1/epsilon^2 * log^{2+o(1)} n) rounds

    On Closeness to k-Wise Uniformity

    Get PDF
    A probability distribution over {-1, 1}^n is (epsilon, k)-wise uniform if, roughly, it is epsilon-close to the uniform distribution when restricted to any k coordinates. We consider the problem of how far an (epsilon, k)-wise uniform distribution can be from any globally k-wise uniform distribution. We show that every (epsilon, k)-wise uniform distribution is O(n^{k/2}epsilon)-close to a k-wise uniform distribution in total variation distance. In addition, we show that this bound is optimal for all even k: we find an (epsilon, k)-wise uniform distribution that is Omega(n^{k/2}epsilon)-far from any k-wise uniform distribution in total variation distance. For k=1, we get a better upper bound of O(epsilon), which is also optimal. One application of our closeness result is to the sample complexity of testing whether a distribution is k-wise uniform or delta-far from k-wise uniform. We give an upper bound of O(n^{k}/delta^2) (or O(log n/delta^2) when k = 1) on the required samples. We show an improved upper bound of O~(n^{k/2}/delta^2) for the special case of testing fully uniform vs. delta-far from k-wise uniform. Finally, we complement this with a matching lower bound of Omega(n/delta^2) when k = 2. Our results improve upon the best known bounds from [Alon et al., 2007], and have simpler proofs

    Syntactic Separation of Subset Satisfiability Problems

    Get PDF
    Variants of the Exponential Time Hypothesis (ETH) have been used to derive lower bounds on the time complexity for certain problems, so that the hardness results match long-standing algorithmic results. In this paper, we consider a syntactically defined class of problems, and give conditions for when problems in this class require strongly exponential time to approximate to within a factor of (1-epsilon) for some constant epsilon > 0, assuming the Gap Exponential Time Hypothesis (Gap-ETH), versus when they admit a PTAS. Our class includes a rich set of problems from additive combinatorics, computational geometry, and graph theory. Our hardness results also match the best known algorithmic results for these problems
    corecore