424 research outputs found

    On the equivalences of the wheel W5, the prism P and the bipyramid B5

    Get PDF
    The main results of this paper are the discovery of infinite families of flow equivalent pairs of B5 and W5 amallamorphs and infinite families of chromatically equivalent pairs of P and W*5 homeomorphs, where B5 is K5 with one edge deleted, P is the Prism graph and W5 is the join of K1 and a cycle on 4 vertices. Six families of B5 amallamorphs, with two families having 6 parameters, and 9 families of W5 amallamorphs, with one family having 4 parameters, are discovered. Since B5 and W5 are both planar, all these results obtained can be stated in terms of chromatically equivalent pairs of B*5 and W*5 homeomorphs. Also three conjectures are made about non-existence of flow-equivalent amallamorphs or chromatically equivalent homeomorphs of certain graphs (Refer to PDF file for exact formulas)

    Exact Results on Potts Model Partition Functions in a Generalized External Field and Weighted-Set Graph Colorings

    Full text link
    We present exact results on the partition function of the qq-state Potts model on various families of graphs GG in a generalized external magnetic field that favors or disfavors spin values in a subset Is={1,...,s}I_s = \{1,...,s\} of the total set of possible spin values, Z(G,q,s,v,w)Z(G,q,s,v,w), where vv and ww are temperature- and field-dependent Boltzmann variables. We remark on differences in thermodynamic behavior between our model with a generalized external magnetic field and the Potts model with a conventional magnetic field that favors or disfavors a single spin value. Exact results are also given for the interesting special case of the zero-temperature Potts antiferromagnet, corresponding to a set-weighted chromatic polynomial Ph(G,q,s,w)Ph(G,q,s,w) that counts the number of colorings of the vertices of GG subject to the condition that colors of adjacent vertices are different, with a weighting ww that favors or disfavors colors in the interval IsI_s. We derive powerful new upper and lower bounds on Z(G,q,s,v,w)Z(G,q,s,v,w) for the ferromagnetic case in terms of zero-field Potts partition functions with certain transformed arguments. We also prove general inequalities for Z(G,q,s,v,w)Z(G,q,s,v,w) on different families of tree graphs. As part of our analysis, we elucidate how the field-dependent Potts partition function and weighted-set chromatic polynomial distinguish, respectively, between Tutte-equivalent and chromatically equivalent pairs of graphs.Comment: 39 pages, 1 figur

    Distinguishing graphs by their left and right homomorphism profiles

    Get PDF
    We introduce a new property of graphs called ‘q-state Potts unique-ness’ and relate it to chromatic and Tutte uniqueness, and also to ‘chromatic–flow uniqueness’, recently studied by Duan, Wu and Yu. We establish for which edge-weighted graphs H homomor-phism functions from multigraphs G to H are specializations of the Tutte polynomial of G, in particular answering a question of Freed-man, Lovász and Schrijver. We also determine for which edge-weighted graphs H homomorphism functions from multigraphs G to H are specializations of the ‘edge elimination polynomial’ of Averbouch, Godlin and Makowsky and the ‘induced subgraph poly-nomial’ of Tittmann, Averbouch and Makowsky. Unifying the study of these and related problems is the notion of the left and right homomorphism profiles of a graph.Ministerio de Educación y Ciencia MTM2008-05866-C03-01Junta de Andalucía FQM- 0164Junta de Andalucía P06-FQM-0164

    Chromatic Equivalence Classes and Chromatic Defining Numbers of Certain Graphs

    Get PDF
    There are two parts in this dissertation: the chromatic equivalence classes and the chromatic defining numbers of graphs. In the first part the chromaticity of the family of generalized polygon trees with intercourse number two, denoted by Cr (a, b; c, d), is studied. It is known that Cr( a, b; c, d) is a chromatic equivalence class if min {a, b, c, d} ≥ r+3. We consider Cr( a, b; c, d) when min{ a, b, c, d} ≤ r + 2. The necessary and sufficient conditions for Cr(a, b; c, d) with min {a, b, c, d} ≤ r + 2 to be a chromatic equivalence class are given. Thus, the chromaticity of Cr (a, b; c, d) is completely characterized. In the second part the defining numbers of regular graphs are studied. Let d(n, r, X = k) be the smallest value of defining numbers of all r-regular graphs of order n and the chromatic number equals to k. It is proved that for a given integer k and each r ≥ 2(k - 1) and n ≥ 2k, d(n, r, X = k) = k - 1. Next, a new lower bound for the defining numbers of r-regular k-chromatic graphs with k < r < 2( k - 1) is found. Finally, the value of d( n , r, X = k) when k < r < 2(k - 1) for certain values of n and r is determined
    corecore