103 research outputs found

    Automated CVE Analysis for Threat Prioritization and Impact Prediction

    Full text link
    The Common Vulnerabilities and Exposures (CVE) are pivotal information for proactive cybersecurity measures, including service patching, security hardening, and more. However, CVEs typically offer low-level, product-oriented descriptions of publicly disclosed cybersecurity vulnerabilities, often lacking the essential attack semantic information required for comprehensive weakness characterization and threat impact estimation. This critical insight is essential for CVE prioritization and the identification of potential countermeasures, particularly when dealing with a large number of CVEs. Current industry practices involve manual evaluation of CVEs to assess their attack severities using the Common Vulnerability Scoring System (CVSS) and mapping them to Common Weakness Enumeration (CWE) for potential mitigation identification. Unfortunately, this manual analysis presents a major bottleneck in the vulnerability analysis process, leading to slowdowns in proactive cybersecurity efforts and the potential for inaccuracies due to human errors. In this research, we introduce our novel predictive model and tool (called CVEDrill) which revolutionizes CVE analysis and threat prioritization. CVEDrill accurately estimates the CVSS vector for precise threat mitigation and priority ranking and seamlessly automates the classification of CVEs into the appropriate CWE hierarchy classes. By harnessing CVEDrill, organizations can now implement cybersecurity countermeasure mitigation with unparalleled accuracy and timeliness, surpassing in this domain the capabilities of state-of-the-art tools like ChaptGPT

    The Secure and Energy Efficient Data Routing in the IoT based Network

    Get PDF
    The business applications such as weather forecasting, traffic management, weather forecasting, traffic management, etc., are enormously adopting Internet of Things(IoT). While scaling of these applications are fast, the device/sensor capabilities, particularly in terms of battery life and energy efficiency is limited. Despite of intensive research conducted to address these shortcomings, Wireless IoT Sensor Network(WIoTSN) still cannot assure 100\% efficient network life. Therefore, the core objective of the thesis is to provide an overview of energy efficiency of proactive(OLSR) and reactive(DSR and AODV) data routing protocols by scaling the size of network, i.e. number of sensor nodes, data packet size, data transmission rate and speed of mobile sink node. It also reviews the importance of security in WIoTSN. The two approaches, such as literature review and simulation testing, are used to achieve the objective of the thesis. The literature review provides information about reactive and proactive protocols and their mechanism for route discovery. Similarly, the network simulator tool NS3 is used for running simulation to evaluate the performance of selected routing protocols for energy efficiency. The thesis results showed the effect of scaling the parameters selected for experimental purpose on the energy efficiency of proactive and reactive data routing protocols. The simulation results prove that the reactive protocol DSR outperforms another reactive protocol AODV and proactive protocol OLSR in energy efficiency. From the security perspective, the thesis also emphasizes its need in IoT and suggest to minimize wasteful resources in WIoTSN and use them by restructuring the network for secure energy-efficient data routing protocols

    Holistic security 4.0

    Get PDF
    The future computer climate will represent an ever more aligned world of integrating technologies, affecting consumer, business and industry sectors. The vision was first outlined in the Industry 4.0 conception. The elements which comprise smart systems or embedded devices have been investigated to determine the technological climate. The emerging technologies revolve around core concepts, and specifically in this project, the uses of Internet of Things (IoT), Industrial Internet of Things (IIoT) and Internet of Everything (IoE). The application of bare metal and logical technology qualities are put under the microscope to provide an effective blue print of the technological field. The systems and governance surrounding smart systems are also examined. Such an approach helps to explain the beneficial or negative elements of smart devices. Consequently, this ensures a comprehensive review of standards, laws, policy and guidance to enable security and cybersecurity of the 4.0 systems

    Context and communication profiling for IoT security and privacy: techniques and applications

    Get PDF
    During the last decade, two major technological changes have profoundly changed the way in which users consume and interact with on-line services and applications. The first of these has been the success of mobile computing, in particular that of smartphones, the primary end device used by many users for access to the Internet and various applications. The other change is the emergence of the so-called Internet-of-Things (IoT), denoting a technological transition in which everyday objects like household appliances that traditionally have been seen as stand-alone devices, are given network connectivity by introducing digital communication capabilities to those devices. The topic of this dissertation is related to a core challenge that the emergence of these technologies is introducing: how to effectively manage the security and privacy settings of users and devices in a user-friendly manner in an environment in which an ever-growing number of heterogeneous devices live and co-exist with each other? In particular we study approaches for utilising profiling of contextual parameters and device communications in order to make autonomous security decisions with the goal of striking a better balance between a system's security on one hand, and, its usability on the other. We introduce four distinct novel approaches utilising profiling for this end. First, we introduce ConXsense, a system demonstrating the use of user-specific longitudinal profiling of contextual information for modelling the usage context of mobile computing devices. Based on this ConXsense can probabilistically automate security policy decisions affecting security settings of the device. Further we develop an approach utilising the similarity of contextual parameters observed with on-board sensors of co-located devices to construct proofs of presence that are resilient to context-guessing attacks by adversaries that seek to fool a device into believing the adversary is co-located with it, even though it is in reality not. We then extend this approach to a context-based key evolution approach that allows IoT devices that are co-present in the same physical environment like the same room to use passively observed context measurements to iteratively authenticate their co-presence and thus gradually establish confidence in the other device being part of the same trust domain, e.g., the set of IoT devices in a user's home. We further analyse the relevant constraints that need to be taken into account to ensure security and usability of context-based authentication. In the final part of this dissertation we extend the profiling approach to network communications of IoT devices and utilise it to realise the design of the IoTSentinel system for autonomous security policy adaptation in IoT device networks. We show that by monitoring the inherent network traffic of IoT devices during their initial set-up, we can automatically identify the type of device newly added to the network. The device-type information is then used by IoTSentinel to adapt traffic filtering rules automatically to provide isolation of devices that are potentially vulnerable to known attacks, thereby protecting the device itself and the rest of the network from threats arising from possible compromise of vulnerable devices

    A Novel Trust Taxonomy for Shared Cyber Threat Intelligence

    Get PDF
    Cyber threat intelligence sharing has become a focal point for many organizations to improve resilience against cyber attacks. The objective lies on sharing relevant information achieved through automating as many processes as possible without losing control or compromising security. The intelligence may be crowdsourced from decentralized stakeholders to collect and enrich existing information. Trust is an attribute of actionable cyber threat intelligence that has to be established between stakeholders. Sharing information about vulnerabilities requires a high level of trust because of the sensitive information. Some threat intelligence platforms/providers support trust establishment through internal vetting processes, others rely on stakeholders to manually build up trust. The latter may reduce the amount of intelligence sources. This work presents a novel trust taxonomy to establish a trusted threat sharing environment. 30 popular threat intelligence platforms/providers were analyzed and compared regarding trust functionalities. Trust taxonomies were analyzed and compared. Illustrative case studies were developed and analyzed applying our trust taxonomy

    Wide-Area Situation Awareness based on a Secure Interconnection between Cyber-Physical Control Systems

    Get PDF
    Posteriormente, examinamos e identificamos los requisitos especiales que limitan el diseño y la operación de una arquitectura de interoperabilidad segura para los SSC (particularmente los SCCF) del smart grid. Nos enfocamos en modelar requisitos no funcionales que dan forma a esta infraestructura, siguiendo la metodología NFR para extraer requisitos esenciales, técnicas para la satisfacción de los requisitos y métricas para nuestro modelo arquitectural. Estudiamos los servicios necesarios para la interoperabilidad segura de los SSC del SG revisando en profundidad los mecanismos de seguridad, desde los servicios básicos hasta los procedimientos avanzados capaces de hacer frente a las amenazas sofisticadas contra los sistemas de control, como son los sistemas de detección, protección y respuesta ante intrusiones. Nuestro análisis se divide en diferentes áreas: prevención, consciencia y reacción, y restauración; las cuales general un modelo de seguridad robusto para la protección de los sistemas críticos. Proporcionamos el diseño para un modelo arquitectural para la interoperabilidad segura y la interconexión de los SCCF del smart grid. Este escenario contempla la interconectividad de una federación de proveedores de energía del SG, que interactúan a través de la plataforma de interoperabilidad segura para gestionar y controlar sus infraestructuras de forma cooperativa. La plataforma tiene en cuenta las características inherentes y los nuevos servicios y tecnologías que acompañan al movimiento de la Industria 4.0. Por último, presentamos una prueba de concepto de nuestro modelo arquitectural, el cual ayuda a validar el diseño propuesto a través de experimentaciones. Creamos un conjunto de casos de validación que prueban algunas de las funcionalidades principales ofrecidas por la arquitectura diseñada para la interoperabilidad segura, proporcionando información sobre su rendimiento y capacidades.Las infraestructuras críticas (IICC) modernas son vastos sistemas altamente complejos, que precisan del uso de las tecnologías de la información para gestionar, controlar y monitorizar el funcionamiento de estas infraestructuras. Debido a sus funciones esenciales, la protección y seguridad de las infraestructuras críticas y, por tanto, de sus sistemas de control, se ha convertido en una tarea prioritaria para las diversas instituciones gubernamentales y académicas a nivel mundial. La interoperabilidad de las IICC, en especial de sus sistemas de control (SSC), se convierte en una característica clave para que estos sistemas sean capaces de coordinarse y realizar tareas de control y seguridad de forma cooperativa. El objetivo de esta tesis se centra, por tanto, en proporcionar herramientas para la interoperabilidad segura de los diferentes SSC, especialmente los sistemas de control ciber-físicos (SCCF), de forma que se potencie la intercomunicación y coordinación entre ellos para crear un entorno en el que las diversas infraestructuras puedan realizar tareas de control y seguridad cooperativas, creando una plataforma de interoperabilidad segura capaz de dar servicio a diversas IICC, en un entorno de consciencia situacional (del inglés situational awareness) de alto espectro o área (wide-area). Para ello, en primer lugar, revisamos las amenazas de carácter más sofisticado que amenazan la operación de los sistemas críticos, particularmente enfocándonos en los ciberataques camuflados (del inglés stealth) que amenazan los sistemas de control de infraestructuras críticas como el smart grid. Enfocamos nuestra investigación al análisis y comprensión de este nuevo tipo de ataques que aparece contra los sistemas críticos, y a las posibles contramedidas y herramientas para mitigar los efectos de estos ataques

    The Proceedings of 15th Australian Information Security Management Conference, 5-6 December, 2017, Edith Cowan University, Perth, Australia

    Get PDF
    Conference Foreword The annual Security Congress, run by the Security Research Institute at Edith Cowan University, includes the Australian Information Security and Management Conference. Now in its fifteenth year, the conference remains popular for its diverse content and mixture of technical research and discussion papers. The area of information security and management continues to be varied, as is reflected by the wide variety of subject matter covered by the papers this year. The papers cover topics from vulnerabilities in “Internet of Things” protocols through to improvements in biometric identification algorithms and surveillance camera weaknesses. The conference has drawn interest and papers from within Australia and internationally. All submitted papers were subject to a double blind peer review process. Twenty two papers were submitted from Australia and overseas, of which eighteen were accepted for final presentation and publication. We wish to thank the reviewers for kindly volunteering their time and expertise in support of this event. We would also like to thank the conference committee who have organised yet another successful congress. Events such as this are impossible without the tireless efforts of such people in reviewing and editing the conference papers, and assisting with the planning, organisation and execution of the conference. To our sponsors, also a vote of thanks for both the financial and moral support provided to the conference. Finally, thank you to the administrative and technical staff, and students of the ECU Security Research Institute for their contributions to the running of the conference

    A DEVSECOPS APPROACH FOR DEVELOPING AND DEPLOYING CONTAINERIZED CLOUD-BASED SOFTWARE ON SUBMARINES

    Get PDF
    There are unique challenges for using secure cloud services in disconnected resource-constrained environments and with controlled data. To address those challenges, this thesis introduces a tactical-edge platform-as-a-service (PaaS) solution with a declarative-delivery method for submarine Consolidated Afloat Network Enterprise Services (CANES) operating systems. The PaaS is adapted from the Department of Defense’s Big Bang core elements for submarine-focused outcomes. Using the Team Submarine Project Blue initiative as a case study, this thesis consists of a feasibility study for running containerized applications on different submarine-compatible baselines and applying a prototype declarative software-delivery method called ZARF. We demonstrated the feasibility of using ZARF for packaging and automated deployment of the Project Blue PaaS and its software to the submarine CANES infrastructure. This research culminated in successful integration tests on a current and future submarine hardware and software baseline. The thesis documents the execution of the research, lessons learned, and recommendations for the Navy’s path forward for development of secure software and declarative deployment in air-gapped environments.Outstanding ThesisLieutenant, United States NavyApproved for public release. Distribution is unlimited

    The InfoSec Handbook

    Get PDF
    Computer scienc
    corecore