215 research outputs found

    Pairing computation on Edwards curves with high-degree twists

    Get PDF
    In this paper, we propose an elaborate geometry approach to explain the group law on twisted Edwards curves which are seen as the intersection of quadric surfaces in place. Using the geometric interpretation of the group law we obtain the Miller function for Tate pairing computation on twisted Edwards curves. Then we present the explicit formulae for pairing computation on twisted Edwards curves. Our formulae for the doubling step are a littler faster than that proposed by Arene et.al.. Finally, to improve the efficiency of pairing computation we present twists of degree 4 and 6 on twisted Edwards curves

    Faster computation of the Tate pairing

    Get PDF
    This paper proposes new explicit formulas for the doubling and addition step in Miller's algorithm to compute the Tate pairing. For Edwards curves the formulas come from a new way of seeing the arithmetic. We state the first geometric interpretation of the group law on Edwards curves by presenting the functions which arise in the addition and doubling. Computing the coefficients of the functions and the sum or double of the points is faster than with all previously proposed formulas for pairings on Edwards curves. They are even competitive with all published formulas for pairing computation on Weierstrass curves. We also speed up pairing computation on Weierstrass curves in Jacobian coordinates. Finally, we present several examples of pairing-friendly Edwards curves.Comment: 15 pages, 2 figures. Final version accepted for publication in Journal of Number Theor

    Pairing Computation on Elliptic Curves of Jacobi Quartic Form

    Get PDF
    This paper proposes explicit formulae for the addition step and doubling step in Miller\u27s algorithm to compute Tate pairing on Jacobi quartic curves. We present a geometric interpretation of the group law on Jacobi quartic curves, %and our formulae for Miller\u27s %algorithm come from this interpretation. which leads to formulae for Miller\u27s algorithm. The doubling step formula is competitive with that for Weierstrass curves and Edwards curves. Moreover, by carefully choosing the coefficients, there exist quartic twists of Jacobi quartic curves from which pairing computation can benefit a lot. Finally, we provide some examples of supersingular and ordinary pairing friendly Jacobi quartic curves

    The Pairing Computation on Edwards Curves

    Get PDF
    We propose an elaborate geometry approach to explain the group law on twisted Edwards curves which are seen as the intersection of quadric surfaces in place. Using the geometric interpretation of the group law, we obtain the Miller function for Tate pairing computation on twisted Edwards curves. Then we present the explicit formulae for pairing computation on twisted Edwards curves. Our formulae for the doubling step are a little faster than that proposed by Arène et al. Finally, to improve the efficiency of pairing computation, we present twists of degrees 4 and 6 on twisted Edwards curves

    Efficient Computation for Pairing Based Cryptography: A State of the Art

    Get PDF

    A Survey Report On Elliptic Curve Cryptography

    Get PDF
    The paper presents an extensive and careful study of elliptic curve cryptography (ECC) and its applications. This paper also discuss the arithmetic involved in elliptic curve  and how these curve operations is crucial in determining the performance of cryptographic systems. It also presents  different forms of elliptic curve in various coordinate system , specifying which is most widely used and why. It also explains how isogenenies between elliptic curve  provides the secure ECC. Exentended form of elliptic curve i.e hyperelliptic curve has been presented here with its pros and cons. Performance of ECC and HEC is also discussed based on scalar multiplication and DLP. Keywords: Elliptic curve cryptography (ECC), isogenies, hyperelliptic curve (HEC) , Discrete Logarithm Problem (DLP), Integer  Factorization , Binary Field, Prime FieldDOI:http://dx.doi.org/10.11591/ijece.v1i2.8
    corecore