2,127 research outputs found

    Model-driven Scheduling for Distributed Stream Processing Systems

    Full text link
    Distributed Stream Processing frameworks are being commonly used with the evolution of Internet of Things(IoT). These frameworks are designed to adapt to the dynamic input message rate by scaling in/out.Apache Storm, originally developed by Twitter is a widely used stream processing engine while others includes Flink, Spark streaming. For running the streaming applications successfully there is need to know the optimal resource requirement, as over-estimation of resources adds extra cost.So we need some strategy to come up with the optimal resource requirement for a given streaming application. In this article, we propose a model-driven approach for scheduling streaming applications that effectively utilizes a priori knowledge of the applications to provide predictable scheduling behavior. Specifically, we use application performance models to offer reliable estimates of the resource allocation required. Further, this intuition also drives resource mapping, and helps narrow the estimated and actual dataflow performance and resource utilization. Together, this model-driven scheduling approach gives a predictable application performance and resource utilization behavior for executing a given DSPS application at a target input stream rate on distributed resources.Comment: 54 page

    Monte Carlo Method with Heuristic Adjustment for Irregularly Shaped Food Product Volume Measurement

    Get PDF
    Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method

    Virtual machine cluster mobility in inter-cloud platforms

    Get PDF
    Modern cloud computing applications developed from different interoperable services that are interfacing with each other in a loose coupling approach. This work proposes the concept of the Virtual Machine (VM) cluster migration, meaning that services could be migrated to various clouds based on different constraints such as computational resources and better economical offerings. Since cloud services are instantiated as VMs, an application can be seen as a cluster of VMs that integrate its functionality. We focus on the VM cluster migration by exploring a more sophisticated method with regards to VM network configurations. In particular, networks are hard to managed because their internal setup is changed after a migration, and this is related with the configuration parameters during the re-instantiation to the new cloud platform. To address such issue, we introduce a Software Defined Networking (SDN) service that breaks the problem of network configuration into tractable pieces and involves virtual bridges instead of references to static endpoints. The architecture is modular, it is based on the SDN OpenFlow protocol and allows VMs to be paired in cluster groups that communicate with each other independently of the cloud platform that are deployed. The experimental analysis demonstrates migrations of VM clusters and provides a detailed discussion of service performance for different cases

    Vehicle Coordinated Strategy for Vehicle Routing Problem with Fuzzy Demands

    Get PDF
    The vehicle routing problem with fuzzy demands (VRPFD) is considered. A fuzzy reasoning constrained program model is formulated for VRPFD, and a hybrid ant colony algorithm is proposed to minimize total travel distance. Specifically, the two-vehicle-paired loop coordinated strategy is presented to reduce the additional distance, unloading times, and waste capacity caused by the service failure due to the uncertain demands. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed approaches
    corecore