25,881 research outputs found

    Paired Comparisons-based Interactive Differential Evolution

    Get PDF
    We propose Interactive Differential Evolution (IDE) based on paired comparisons for reducing user fatigue and evaluate its convergence speed in comparison with Interactive Genetic Algorithms (IGA) and tournament IGA. User interface and convergence performance are two big keys for reducing Interactive Evolutionary Computation (IEC) user fatigue. Unlike IGA and conventional IDE, users of the proposed IDE and tournament IGA do not need to compare whole individuals each other but compare pairs of individuals, which largely decreases user fatigue. In this paper, we design a pseudo-IEC user and evaluate another factor, IEC convergence performance, using IEC simulators and show that our proposed IDE converges significantly faster than IGA and tournament IGA, i.e. our proposed one is superior to others from both user interface and convergence performance points of view

    Genome of Drosophila suzukii, the spotted wing drosophila.

    Get PDF
    Drosophila suzukii Matsumura (spotted wing drosophila) has recently become a serious pest of a wide variety of fruit crops in the United States as well as in Europe, leading to substantial yearly crop losses. To enable basic and applied research of this important pest, we sequenced the D. suzukii genome to obtain a high-quality reference sequence. Here, we discuss the basic properties of the genome and transcriptome and describe patterns of genome evolution in D. suzukii and its close relatives. Our analyses and genome annotations are presented in a web portal, SpottedWingFlyBase, to facilitate public access

    Differential Functional Constraints Cause Strain-Level Endemism in Polynucleobacter Populations.

    Get PDF
    The adaptation of bacterial lineages to local environmental conditions creates the potential for broader genotypic diversity within a species, which can enable a species to dominate across ecological gradients because of niche flexibility. The genus Polynucleobacter maintains both free-living and symbiotic ecotypes and maintains an apparently ubiquitous distribution in freshwater ecosystems. Subspecies-level resolution supplemented with metagenome-derived genotype analysis revealed that differential functional constraints, not geographic distance, produce and maintain strain-level genetic conservation in Polynucleobacter populations across three geographically proximal riverine environments. Genes associated with cofactor biosynthesis and one-carbon metabolism showed habitat specificity, and protein-coding genes of unknown function and membrane transport proteins were under positive selection across each habitat. Characterized by different median ratios of nonsynonymous to synonymous evolutionary changes (dN/dS ratios) and a limited but statistically significant negative correlation between the dN/dS ratio and codon usage bias between habitats, the free-living and core genotypes were observed to be evolving under strong purifying selection pressure. Highlighting the potential role of genetic adaptation to the local environment, the two-component system protein-coding genes were highly stable (dN/dS ratio, < 0.03). These results suggest that despite the impact of the habitat on genetic diversity, and hence niche partition, strong environmental selection pressure maintains a conserved core genome for Polynucleobacter populations. IMPORTANCE Understanding the biological factors influencing habitat-wide genetic endemism is important for explaining observed biogeographic patterns. Polynucleobacter is a genus of bacteria that seems to have found a way to colonize myriad freshwater ecosystems and by doing so has become one of the most abundant bacteria in these environments. We sequenced metagenomes from locations across the Chicago River system and assembled Polynucleobacter genomes from different sites and compared how the nucleotide composition, gene codon usage, and the ratio of synonymous (codes for the same amino acid) to nonsynonymous (codes for a different amino acid) mutations varied across these population genomes at each site. The environmental pressures at each site drove purifying selection for functional traits that maintained a streamlined core genome across the Chicago River Polynucleobacter population while allowing for site-specific genomic adaptation. These adaptations enable Polynucleobacter to become dominant across different riverine environmental gradients

    Drought Stress Results in a Compartment-Specific Restructuring of the Rice Root-Associated Microbiomes.

    Get PDF
    Plant roots support complex microbial communities that can influence plant growth, nutrition, and health. While extensive characterizations of the composition and spatial compartmentalization of these communities have been performed in different plant species, there is relatively little known about the impact of abiotic stresses on the root microbiota. Here, we have used rice as a model to explore the responses of root microbiomes to drought stress. Using four distinct genotypes, grown in soils from three different fields, we tracked the drought-induced changes in microbial composition in the rhizosphere (the soil immediately surrounding the root), the endosphere (the root interior), and unplanted soils. Drought significantly altered the overall bacterial and fungal compositions of all three communities, with the endosphere and rhizosphere compartments showing the greatest divergence from well-watered controls. The overall response of the bacterial microbiota to drought stress was taxonomically consistent across soils and cultivars and was primarily driven by an enrichment of multiple Actinobacteria and Chloroflexi, as well as a depletion of several Acidobacteria and Deltaproteobacteria While there was some overlap in the changes observed in the rhizosphere and endosphere communities, several drought-responsive taxa were compartment specific, a pattern likely arising from preexisting compositional differences, as well as plant-mediated processes affecting individual compartments. These results reveal that drought stress, in addition to its well-characterized effects on plant physiology, also results in restructuring of root microbial communities and suggest the possibility that constituents of the altered plant microbiota might contribute to plant survival under extreme environmental conditions.IMPORTANCE With the likelihood that changes in global climate will adversely affect crop yields, the potential role of microbial communities in enhancing plant performance makes it important to elucidate the responses of plant microbiomes to environmental variation. By detailed characterization of the effect of drought stress on the root-associated microbiota of the crop plant rice, we show that the rhizosphere and endosphere communities undergo major compositional changes that involve shifts in the relative abundances of a taxonomically diverse set of bacteria in response to drought. These drought-responsive microbes, in particular those enriched under water deficit conditions, could potentially benefit the plant as they could contribute to tolerance to drought and other abiotic stresses, as well as provide protection from opportunistic infection by pathogenic microbes. The identification and future isolation of microbes that promote plant tolerance to drought could potentially be used to mitigate crop losses arising from adverse shifts in climate

    The genetic architecture underlying the evolution of a rare piscivorous life history form in brown trout after secondary contact and strong introgression

    Get PDF
    Identifying the genetic basis underlying phenotypic divergence and reproductive isolation is a longstanding problem in evolutionary biology. Genetic signals of adaptation and reproductive isolation are often confounded by a wide range of factors, such as variation in demographic history or genomic features. Brown trout ( ) in the Loch Maree catchment, Scotland, exhibit reproductively isolated divergent life history morphs, including a rare piscivorous (ferox) life history form displaying larger body size, greater longevity and delayed maturation compared to sympatric benthivorous brown trout. Using a dataset of 16,066 SNPs, we analyzed the evolutionary history and genetic architecture underlying this divergence. We found that ferox trout and benthivorous brown trout most likely evolved after recent secondary contact of two distinct glacial lineages, and identified 33 genomic outlier windows across the genome, of which several have most likely formed through selection. We further identified twelve candidate genes and biological pathways related to growth, development and immune response potentially underpinning the observed phenotypic differences. The identification of clear genomic signals divergent between life history phenotypes and potentially linked to reproductive isolation, through size assortative mating, as well as the identification of the underlying demographic history, highlights the power of genomic studies of young species pairs for understanding the factors shaping genetic differentiation
    corecore