217 research outputs found

    Drawing Light in the Cave: Embodied Spatial Drawing in Virtual Reality with Agency and Presence

    Get PDF
    This thesis project began as an exploration of the ways in which Virtual Reality (VR) could revolutionize drawing. What I learned through this research journey was that drawing could also revolutionize how we see, and therefore, what we can do, in VR. I will begin by establishing a contextual background about the vision that some artists and theorists have had about the potential of VR over the past three decades. These individuals hoped to see VR become a tool that could help us learn to see and do things differently than the conventions of our everyday reality. Throughout this background context, I will form links to how three themes in VR: agency, presence, and embodiment, are all linked to drawing. With a focus on creative works made in VR, I will summarize the challenges to embodiment that I observed through my design research. I will present the pivotal insight in my research: that the root of these challenges lies in the use of linear perspective, a drawing method that evolved into a coordinate system that now underpins computer graphics systems. I will propose that an alternative method of drawing in perspective is made possible through VR; one that is based on the perceptual qualities of how we naturally see. In addition, I will show how VR also offers the possibility of drawing in an embodied way through techniques of spatial gesture drawing. Lastly, I will present two methods for applying these concepts for creatives working with 3D geometry in VR. While these methods will help creators today, I hope that this research can contribute to the innovation of VR software and tools

    FACING EXPERIENCE: A PAINTER’S CANVAS IN VIRTUAL REALITY

    Get PDF
    Full version unavailable due to 3rd party copyright restrictions.This research investigates how shifts in perception might be brought about through the development of visual imagery created by the use of virtual environment technology. Through a discussion of historical uses of immersion in art, this thesis will explore how immersion functions and why immersion has been a goal for artists throughout history. It begins with a discussion of ancient cave drawings and the relevance of Plato’s Allegory of the Cave. Next it examines the biological origins of “making special.” The research will discuss how this concept, combined with the ideas of “action” and “reaction,” has reinforced the view that art is fundamentally experiential rather than static. The research emphasizes how present-day virtual environment art, in providing a space that engages visitors in computer graphics, expands on previous immersive artistic practices. The thesis examines the technical context in which the research occurs by briefly describing the use of computer science technologies, the fundamentals of visual arts practices, and the importance of aesthetics in new media and provides a description of my artistic practice. The aim is to investigate how combining these approaches can enhance virtual environments as artworks. The computer science of virtual environments includes both hardware and software programming. The resultant virtual environment experiences are technologically dependent on the types of visual displays being used, including screens and monitors, and their subsequent viewing affordances. Virtual environments fill the field of view and can be experienced with a head mounted display (HMD) or a large screen display. The sense of immersion gained through the experience depends on how tracking devices and related peripheral devices are used to facilitate interaction. The thesis discusses visual arts practices with a focus on how illusions shift our cognition and perception in the visual modalities. This discussion includes how perceptual thinking is the foundation of art experiences, how analogies are the foundation of cognitive experiences and how the two intertwine in art experiences for virtual environments. An examination of the aesthetic strategies used by artists and new media critics are presented to discuss new media art. This thesis investigates the visual elements used in virtual environments and prescribes strategies for creating art for virtual environments. Methods constituting a unique virtual environment practice that focuses on visual analogies are discussed. The artistic practice that is discussed as the basis for this research also concentrates on experiential moments and shifts in perception and cognition and references Douglas Hofstadter, Rudolf Arnheim and John Dewey. iv Virtual environments provide for experiences in which the imagery generated updates in real time. Following an analysis of existing artwork and critical writing relative to the field, the process of inquiry has required the creation of artworks that involve tracking systems, projection displays, sound work, and an understanding of the importance of the visitor. In practice, the research has shown that the visitor should be seen as an interlocutor, interacting from a first-person perspective with virtual environment events, where avatars or other instrumental intermediaries, such as guns, vehicles, or menu systems, do not to occlude the view. The aesthetic outcomes of this research are the result of combining visual analogies, real time interactive animation, and operatic performance in immersive space. The environments designed in this research were informed initially by paintings created with imagery generated in a hypnopompic state or during the moments of transitioning from sleeping to waking. The drawings often emphasize emotional moments as caricatures and/or elements of the face as seen from a number of perspectives simultaneously, in the way of some cartoons, primitive artwork or Cubist imagery. In the imagery, the faces indicate situations, emotions and confrontations which can offer moments of humour and reflective exploration. At times, the faces usurp the space and stand in representation as both face and figure. The power of the placement of the caricatures in the paintings become apparent as the imagery stages the expressive moment. The placement of faces sets the scene, establishes relationships and promotes the honesty and emotions that develop over time as the paintings are scrutinized. The development process of creating virtual environment imagery starts with hand drawn sketches of characters, develops further as paintings on “digital canvas”, are built as animated, three-dimensional models and finally incorporated into a virtual environment. The imagery is generated while drawing, typically with paper and pencil, in a stream of consciousness during the hypnopompic state. This method became an aesthetic strategy for producing a snappy straightforward sketch. The sketches are explored further as they are worked up as paintings. During the painting process, the figures become fleshed out and their placement on the page, in essence brings them to life. These characters inhabit a world that I explore even further by building them into three dimensional models and placing them in computer generated virtual environments. The methodology of developing and placing the faces/figures became an operational strategy for building virtual environments. In order to open up the range of art virtual environments, and develop operational strategies for visitors’ experience, the characters and their facial features are used as navigational strategies, signposts and methods of wayfinding in order to sustain a stream of consciousness type of navigation. Faces and characters were designed to represent those intimate moments of self-reflection and confrontation that occur daily within ourselves and with others. They sought to reflect moments of wonderment, hurt, curiosity and humour that could subsequently be relinquished for more practical or purposeful endeavours. They were intended to create conditions in which visitors might reflect upon their emotional state, v enabling their understanding and trust of their personal space, in which decisions are made and the nature of world is determined. In order to extend the split-second, frozen moment of recognition that a painting affords, the caricatures and their scenes are given new dimensions as they become characters in a performative virtual reality. Emotables, distinct from avatars, are characters confronting visitors in the virtual environment to engage them in an interactive, stream of consciousness, non-linear dialogue. Visitors are also situated with a role in a virtual world, where they were required to adapt to the language of the environment in order to progress through the dynamics of a drama. The research showed that imagery created in a context of whimsy and fantasy could bring ontological meaning and aesthetic experience into the interactive environment, such that emotables or facially expressive computer graphic characters could be seen as another brushstroke in painting a world of virtual reality

    Evaluating 360° media experiences

    Get PDF
    360° media experiences have existed for centuries. Viewing painted panoramas, such as those displayed in the 18th-century rotunda in Leicester Square, was a popular Georgian pastime. Recent advances in capture, processing and display technology have created a surge of interest in the medium, with millions of people now viewing captured 360° media immersively. Despite the popularity of 360° media experiences, there are still substantial technical issues associated with production and distribution, and little research has been done that explores the end-user experience. As these experiences become commonplace, understanding the impact of such media becomes critical. In this work, two user studies were conducted that investigated the effects of 360° media of different forms. The first study looked at the impact of the display type when viewing cinematic virtual reality captured as 360° video. The study used three display types: a head-mounted display (HMD); a standard 16:9 TV; and a focus-plus-context display. Several metrics were explored, including spatial awareness, memory and narrative engagement. The second study investigated the impact of different transition types when exploring static scenes captured as multi-view 360° images in a HMD. The three transitions investigated were a linear movement through a 3D model of the scene, an instantaneous teleportation, and an image-based warp using Möbius transformations. Metrics investigated included spatial awareness, preference, and several subjective qualities such as the feeling of moving through the space. Additionally, an enabling technology for such experiences was investigated. Object removal in 360° images was explored in detail, with extensions for video described for simple cases. Taken together, these three projects further our current understanding of how 360° media can be implemented, and examine some of the most critical aspects of how users engage with these experiences

    Remote Visual Observation of Real Places Through Virtual Reality Headsets

    Get PDF
    Virtual Reality has always represented a fascinating yet powerful opportunity that has attracted studies and technology developments, especially since the latest release on the market of powerful high-resolution and wide field-of-view VR headsets. While the great potential of such VR systems is common and accepted knowledge, issues remain related to how to design systems and setups capable of fully exploiting the latest hardware advances. The aim of the proposed research is to study and understand how to increase the perceived level of realism and sense of presence when remotely observing real places through VR headset displays. Hence, to produce a set of guidelines that give directions to system designers about how to optimize the display-camera setup to enhance performance, focusing on remote visual observation of real places. The outcome of this investigation represents unique knowledge that is believed to be very beneficial for better VR headset designs towards improved remote observation systems. To achieve the proposed goal, this thesis presents a thorough investigation of existing literature and previous researches, which is carried out systematically to identify the most important factors ruling realism, depth perception, comfort, and sense of presence in VR headset observation. Once identified, these factors are further discussed and assessed through a series of experiments and usability studies, based on a predefined set of research questions. More specifically, the role of familiarity with the observed place, the role of the environment characteristics shown to the viewer, and the role of the display used for the remote observation of the virtual environment are further investigated. To gain more insights, two usability studies are proposed with the aim of defining guidelines and best practices. The main outcomes from the two studies demonstrate that test users can experience an enhanced realistic observation when natural features, higher resolution displays, natural illumination, and high image contrast are used in Mobile VR. In terms of comfort, simple scene layouts and relaxing environments are considered ideal to reduce visual fatigue and eye strain. Furthermore, sense of presence increases when observed environments induce strong emotions, and depth perception improves in VR when several monocular cues such as lights and shadows are combined with binocular depth cues. Based on these results, this investigation then presents a focused evaluation on the outcomes and introduces an innovative eye-adapted High Dynamic Range (HDR) approach, which the author believes to be of great improvement in the context of remote observation when combined with eye-tracked VR headsets. Within this purpose, a third user study is proposed to compare static HDR and eye-adapted HDR observation in VR, to assess that the latter can improve realism, depth perception, sense of presence, and in certain cases even comfort. Results from this last study confirmed the author expectations, proving that eye-adapted HDR and eye tracking should be used to achieve best visual performances for remote observation in modern VR systems

    Viability of Photogrammetry for As-built Surveys without Control Points in Building Renovation Projects

    Get PDF
    In recent years, it is becoming more and more common to utilize 3D modeling technology to reconstruct cultural heritages. The most common way to deliver the 3D model of an existing object is based on hands-on surveys and CAD tools which could be impractical for large or complex structure in term of time consumption and cost. Recently, laser scanning technology and more automated photogrammetric modeling methods become available, and making the 3D reconstruction process of real world objects easier. Photogrammetry is one of the most cost-effective approaches we could use to gather the physical information of an object, such as size, location, and appearance. Also, the operation of the equipment of photogrammetry, which is a camera, is very easy and cost-effective. However, it also has its drawback, which is mainly caused the outcome’s low accuracy level. Accurate drawings or models only have been achieved with other approaches, such as 3D laser scanning or total station. The 3D model of the Francis Hall at Texas A&M University, which will be renovated soon, was created in order to investigate whether the image-based 3D model produced using photogrammetry technology would be acceptable or not for the use in renovation projects. For this investigation, the elapsed time for data acquisition and 3D modeling was measured. The accuracy level of the image-based 3D model and the deficiencies of this approach were also recorded. Then, the image-based 3D model of Francis Hall was presented in the BIM CAVE to four industry professionals and one graduate student. The regular 3D model of the Francis Hall, which was created, using dimensions extracted from 2D drawings, was also presented to the interviewees in the BIM CAVE. After watching two different 3D models (image-based 3D model and regular 3D model) of the same Francis Hall, five interviewees were requested to describe the differences they noticed between image-based 3D model and regular 3D model presented in the BIM CAVE. By reviewing and analyzing the data from interviews. Following conclusions could be made. First, the image-based 3D model of Francis Hall gave people more feeling of reality than the traditional CAD drawings or BIM models. Second, the image-based 3D model could be used for saving travels, showing details, improving coordination, improving design, facilities management tool, and marketing tool. Third, in order to make it practical for the industry, the time consumption and cost of generating the image-based 3D model should be at least equivalent to time consumption and cost for architects to conduct survey and generate CAD drawings or BIM model

    Virtual reality based creation of concept model designs for CAD systems

    Get PDF
    This work introduces a novel method to overcome most of the drawbacks in traditional methods for creating design models. The main innovation is the use of virtual tools to simulate the natural physical environment in which freeform. Design models are created by experienced designers. Namely, the model is created in a virtual environment by carving a work piece with tools that simulate NC milling cutters. Algorithms have been developed to support the approach, in which the design model is created in a Virtual Reality (VR) environment and selection and manipulation of tools can be performed in the virtual space. The desianer\u27s hand movements generate the tool trajectories and they are obtained by recording the position and orientation of a hand mounted motion tracker. Swept volumes of virtual tools are generated from the geometry of the tool and its trajectories. Then Boolean operations are performed on the swept volumes and the initial virtual stock (work piece) to create the design model. Algorithms have been developed as a part of this work to integrate the VR environment with a commercial CAD/CAM system in order to demonstrate the practical applications of the research results. The integrated system provides a much more efficient and easy-to-implement process of freeform model creation than employed in current CAD/CAM software. It could prove to be the prototype for the next-generation CAD/CAM system

    Presence 2005: the eighth annual international workshop on presence, 21-23 September, 2005 University College London (Conference proceedings)

    Get PDF
    OVERVIEW (taken from the CALL FOR PAPERS) Academics and practitioners with an interest in the concept of (tele)presence are invited to submit their work for presentation at PRESENCE 2005 at University College London in London, England, September 21-23, 2005. The eighth in a series of highly successful international workshops, PRESENCE 2005 will provide an open discussion forum to share ideas regarding concepts and theories, measurement techniques, technology, and applications related to presence, the psychological state or subjective perception in which a person fails to accurately and completely acknowledge the role of technology in an experience, including the sense of 'being there' experienced by users of advanced media such as virtual reality. The concept of presence in virtual environments has been around for at least 15 years, and the earlier idea of telepresence at least since Minsky's seminal paper in 1980. Recently there has been a burst of funded research activity in this area for the first time with the European FET Presence Research initiative. What do we really know about presence and its determinants? How can presence be successfully delivered with today's technology? This conference invites papers that are based on empirical results from studies of presence and related issues and/or which contribute to the technology for the delivery of presence. Papers that make substantial advances in theoretical understanding of presence are also welcome. The interest is not solely in virtual environments but in mixed reality environments. Submissions will be reviewed more rigorously than in previous conferences. High quality papers are therefore sought which make substantial contributions to the field. Approximately 20 papers will be selected for two successive special issues for the journal Presence: Teleoperators and Virtual Environments. PRESENCE 2005 takes place in London and is hosted by University College London. The conference is organized by ISPR, the International Society for Presence Research and is supported by the European Commission's FET Presence Research Initiative through the Presencia and IST OMNIPRES projects and by University College London
    • 

    corecore