1,089 research outputs found

    Asynchronous iterative computations with Web information retrieval structures: The PageRank case

    Get PDF
    There are several ideas being used today for Web information retrieval, and specifically in Web search engines. The PageRank algorithm is one of those that introduce a content-neutral ranking function over Web pages. This ranking is applied to the set of pages returned by the Google search engine in response to posting a search query. PageRank is based in part on two simple common sense concepts: (i)A page is important if many important pages include links to it. (ii)A page containing many links has reduced impact on the importance of the pages it links to. In this paper we focus on asynchronous iterative schemes to compute PageRank over large sets of Web pages. The elimination of the synchronizing phases is expected to be advantageous on heterogeneous platforms. The motivation for a possible move to such large scale distributed platforms lies in the size of matrices representing Web structure. In orders of magnitude: 101010^{10} pages with 101110^{11} nonzero elements and 101210^{12} bytes just to store a small percentage of the Web (the already crawled); distributed memory machines are necessary for such computations. The present research is part of our general objective, to explore the potential of asynchronous computational models as an underlying framework for very large scale computations over the Grid. The area of ``internet algorithmics'' appears to offer many occasions for computations of unprecedent dimensionality that would be good candidates for this framework.Comment: 8 pages to appear at ParCo2005 Conference Proceeding

    A parallel algorithm to calculate the costrank of a network

    No full text
    We developed analogous parallel algorithms to implement CostRank for distributed memory parallel computers using multi processors. Our intent is to make CostRank calculations for the growing number of hosts in a fast and a scalable way. In the same way we intent to secure large scale networks that require fast and reliable computing to calculate the ranking of enormous graphs with thousands of vertices (states) and millions or arcs (links). In our proposed approach we focus on a parallel CostRank computational architecture on a cluster of PCs networked via Gigabit Ethernet LAN to evaluate the performance and scalability of our implementation. In particular, a partitioning of input data, graph files, and ranking vectors with load balancing technique can improve the runtime and scalability of large-scale parallel computations. An application case study of analogous Cost Rank computation is presented. Applying parallel environment models for one-dimensional sparse matrix partitioning on a modified research page, results in a significant reduction in communication overhead and in per-iteration runtime. We provide an analytical discussion of analogous algorithms performance in terms of I/O and synchronization cost, as well as of memory usage

    GraphH: High Performance Big Graph Analytics in Small Clusters

    Full text link
    It is common for real-world applications to analyze big graphs using distributed graph processing systems. Popular in-memory systems require an enormous amount of resources to handle big graphs. While several out-of-core approaches have been proposed for processing big graphs on disk, the high disk I/O overhead could significantly reduce performance. In this paper, we propose GraphH to enable high-performance big graph analytics in small clusters. Specifically, we design a two-stage graph partition scheme to evenly divide the input graph into partitions, and propose a GAB (Gather-Apply-Broadcast) computation model to make each worker process a partition in memory at a time. We use an edge cache mechanism to reduce the disk I/O overhead, and design a hybrid strategy to improve the communication performance. GraphH can efficiently process big graphs in small clusters or even a single commodity server. Extensive evaluations have shown that GraphH could be up to 7.8x faster compared to popular in-memory systems, such as Pregel+ and PowerGraph when processing generic graphs, and more than 100x faster than recently proposed out-of-core systems, such as GraphD and Chaos when processing big graphs

    GraphMP: An Efficient Semi-External-Memory Big Graph Processing System on a Single Machine

    Full text link
    Recent studies showed that single-machine graph processing systems can be as highly competitive as cluster-based approaches on large-scale problems. While several out-of-core graph processing systems and computation models have been proposed, the high disk I/O overhead could significantly reduce performance in many practical cases. In this paper, we propose GraphMP to tackle big graph analytics on a single machine. GraphMP achieves low disk I/O overhead with three techniques. First, we design a vertex-centric sliding window (VSW) computation model to avoid reading and writing vertices on disk. Second, we propose a selective scheduling method to skip loading and processing unnecessary edge shards on disk. Third, we use a compressed edge cache mechanism to fully utilize the available memory of a machine to reduce the amount of disk accesses for edges. Extensive evaluations have shown that GraphMP could outperform state-of-the-art systems such as GraphChi, X-Stream and GridGraph by 31.6x, 54.5x and 23.1x respectively, when running popular graph applications on a billion-vertex graph

    Characterizing and Subsetting Big Data Workloads

    Full text link
    Big data benchmark suites must include a diversity of data and workloads to be useful in fairly evaluating big data systems and architectures. However, using truly comprehensive benchmarks poses great challenges for the architecture community. First, we need to thoroughly understand the behaviors of a variety of workloads. Second, our usual simulation-based research methods become prohibitively expensive for big data. As big data is an emerging field, more and more software stacks are being proposed to facilitate the development of big data applications, which aggravates hese challenges. In this paper, we first use Principle Component Analysis (PCA) to identify the most important characteristics from 45 metrics to characterize big data workloads from BigDataBench, a comprehensive big data benchmark suite. Second, we apply a clustering technique to the principle components obtained from the PCA to investigate the similarity among big data workloads, and we verify the importance of including different software stacks for big data benchmarking. Third, we select seven representative big data workloads by removing redundant ones and release the BigDataBench simulation version, which is publicly available from http://prof.ict.ac.cn/BigDataBench/simulatorversion/.Comment: 11 pages, 6 figures, 2014 IEEE International Symposium on Workload Characterizatio
    • …
    corecore