849 research outputs found

    Packing odd TT-joins with at most two terminals

    Get PDF
    Take a graph GG, an edge subset ΣE(G)\Sigma\subseteq E(G), and a set of terminals TV(G)T\subseteq V(G) where T|T| is even. The triple (G,Σ,T)(G,\Sigma,T) is called a signed graft. A TT-join is odd if it contains an odd number of edges from Σ\Sigma. Let ν\nu be the maximum number of edge-disjoint odd TT-joins. A signature is a set of the form Σδ(U)\Sigma\triangle \delta(U) where UV(G)U\subseteq V(G) and UT)|U\cap T) is even. Let τ\tau be the minimum cardinality a TT-cut or a signature can achieve. Then ντ\nu\leq \tau and we say that (G,Σ,T)(G,\Sigma,T) packs if equality holds here. We prove that (G,Σ,T)(G,\Sigma,T) packs if the signed graft is Eulerian and it excludes two special non-packing minors. Our result confirms the Cycling Conjecture for the class of clutters of odd TT-joins with at most two terminals. Corollaries of this result include, the characterizations of weakly and evenly bipartite graphs, packing two-commodity paths, packing TT-joins with at most four terminals, and a new result on covering edges with cuts.Comment: extended abstract appeared in IPCO 2014 (under the different title "the cycling property for the clutter of odd st-walks"

    Large induced subgraphs via triangulations and CMSO

    Full text link
    We obtain an algorithmic meta-theorem for the following optimization problem. Let \phi\ be a Counting Monadic Second Order Logic (CMSO) formula and t be an integer. For a given graph G, the task is to maximize |X| subject to the following: there is a set of vertices F of G, containing X, such that the subgraph G[F] induced by F is of treewidth at most t, and structure (G[F],X) models \phi. Some special cases of this optimization problem are the following generic examples. Each of these cases contains various problems as a special subcase: 1) "Maximum induced subgraph with at most l copies of cycles of length 0 modulo m", where for fixed nonnegative integers m and l, the task is to find a maximum induced subgraph of a given graph with at most l vertex-disjoint cycles of length 0 modulo m. 2) "Minimum \Gamma-deletion", where for a fixed finite set of graphs \Gamma\ containing a planar graph, the task is to find a maximum induced subgraph of a given graph containing no graph from \Gamma\ as a minor. 3) "Independent \Pi-packing", where for a fixed finite set of connected graphs \Pi, the task is to find an induced subgraph G[F] of a given graph G with the maximum number of connected components, such that each connected component of G[F] is isomorphic to some graph from \Pi. We give an algorithm solving the optimization problem on an n-vertex graph G in time O(#pmc n^{t+4} f(t,\phi)), where #pmc is the number of all potential maximal cliques in G and f is a function depending of t and \phi\ only. We also show how a similar running time can be obtained for the weighted version of the problem. Pipelined with known bounds on the number of potential maximal cliques, we deduce that our optimization problem can be solved in time O(1.7347^n) for arbitrary graphs, and in polynomial time for graph classes with polynomial number of minimal separators

    Multicommodity flows and polyhedra

    Get PDF

    Clean clutters and dyadic fractional packings

    Get PDF
    A vector is dyadic if each of its entries is a dyadic rational number, i.e., an integer multiple of 1 2k for some nonnegative integer k. We prove that every clean clutter with a covering number of at least two has a dyadic fractional packing of value two. This result is best possible for there exist clean clutters with a covering number of three and no dyadic fractional packing of value three. Examples of clean clutters include ideal clutters, binary clutters, and clutters without an intersecting minor. Our proof is constructive and leads naturally to an albeit exponential algorithm. We improve the running time to quasi-polynomial in the rank of the input, and to polynomial in the binary cas

    Odd Paths, Cycles and TT-joins: Connections and Algorithms

    Full text link
    Minimizing the weight of an edge set satisfying parity constraints is a challenging branch of combinatorial optimization as witnessed by the binary hypergraph chapter of Alexander Schrijver's book ``Combinatorial Optimization'' (Chapter 80). This area contains relevant graph theory problems including open cases of the Max Cut problem, or some multiflow problems. We clarify the interconnections of some problems and establish three levels of difficulties. On the one hand, we prove that the Shortest Odd Path problem in an undirected graph without cycles of negative total weight and several related problems are NP-hard, settling a long-standing open question asked by Lov\'asz (Open Problem 27 in Schrijver's book ``Combinatorial Optimization''. On the other hand, we provide a polynomial-time algorithm to the closely related and well-studied Minimum-weight Odd {s,t}\{s,t\}-Join problem for non-negative weights, whose complexity, however, was not known; more generally, we solve the Minimum-weight Odd TT-Join problem in FPT time when parameterized by T|T|. If negative weights are also allowed, then finding a minimum-weight odd {s,t}\{s,t\}-join is equivalent to the Minimum-weight Odd TT-Join problem for arbitrary weights, whose complexity is only conjectured to be polynomially solvable. The analogous problems for digraphs are also considered.Comment: 24 pages, 2 figure

    Determinantal Sieving

    Full text link
    We introduce determinantal sieving, a new, remarkably powerful tool in the toolbox of algebraic FPT algorithms. Given a polynomial P(X)P(X) on a set of variables X={x1,,xn}X=\{x_1,\ldots,x_n\} and a linear matroid M=(X,I)M=(X,\mathcal{I}) of rank kk, both over a field F\mathbb{F} of characteristic 2, in 2k2^k evaluations we can sieve for those terms in the monomial expansion of PP which are multilinear and whose support is a basis for MM. Alternatively, using 2k2^k evaluations of PP we can sieve for those monomials whose odd support spans MM. Applying this framework, we improve on a range of algebraic FPT algorithms, such as: 1. Solving qq-Matroid Intersection in time O(2(q2)k)O^*(2^{(q-2)k}) and qq-Matroid Parity in time O(2qk)O^*(2^{qk}), improving on O(4qk)O^*(4^{qk}) (Brand and Pratt, ICALP 2021) 2. TT-Cycle, Colourful (s,t)(s,t)-Path, Colourful (S,T)(S,T)-Linkage in undirected graphs, and the more general Rank kk (S,T)(S,T)-Linkage problem, all in O(2k)O^*(2^k) time, improving on O(2k+S)O^*(2^{k+|S|}) respectively O(2S+O(k2log(k+F)))O^*(2^{|S|+O(k^2 \log(k+|\mathbb{F}|))}) (Fomin et al., SODA 2023) 3. Many instances of the Diverse X paradigm, finding a collection of rr solutions to a problem with a minimum mutual distance of dd in time O(2r(r1)d/2)O^*(2^{r(r-1)d/2}), improving solutions for kk-Distinct Branchings from time 2O(klogk)2^{O(k \log k)} to O(2k)O^*(2^k) (Bang-Jensen et al., ESA 2021), and for Diverse Perfect Matchings from O(22O(rd))O^*(2^{2^{O(rd)}}) to O(2r2d/2)O^*(2^{r^2d/2}) (Fomin et al., STACS 2021) All matroids are assumed to be represented over a field of characteristic 2. Over general fields, we achieve similar results at the cost of using exponential space by working over the exterior algebra. For a class of arithmetic circuits we call strongly monotone, this is even achieved without any loss of running time. However, the odd support sieving result appears to be specific to working over characteristic 2

    FPT algorithms for path-transversal and cycle-transversal problems

    Get PDF
    AbstractWe study the parameterized complexity of several vertex- and edge-deletion problems on graphs, parameterized by the number p of deletions. The first kind of problems are separation problems on undirected graphs, where we aim at separating distinguished vertices in a graph. The second kind of problems are feedback set problems on group-labelled graphs, where we aim at breaking nonnull cycles in a graph having its arcs labelled by elements of a group. We obtain new FPT algorithms for these different problems, relying on a generic O∗(4p) algorithm for breaking paths of a homogeneous path system

    Ideal Clutters

    Get PDF
    Let E be a finite set of elements, and let C be a family of subsets of E called members. We say that C is a clutter over ground set E if no member is contained in another. The clutter C is ideal if every extreme point of the polyhedron { x>=0 : x(C) >= 1 for every member C } is integral. Ideal clutters are central objects in Combinatorial Optimization, and they have deep connections to several other areas. To integer programmers, they are the underlying structure of set covering integer programs that are easily solvable. To graph theorists, they are manifest in the famous theorems of Edmonds and Johnson on T-joins, of Lucchesi and Younger on dijoins, and of Guenin on the characterization of weakly bipartite graphs; not to mention they are also the set covering analogue of perfect graphs. To matroid theorists, they are abstractions of Seymour’s sums of circuits property as well as his f-flowing property. And finally, to combinatorial optimizers, ideal clutters host many minimax theorems and are extensions of totally unimodular and balanced matrices. This thesis embarks on a mission to develop the theory of general ideal clutters. In the first half of the thesis, we introduce and/or study tools for finding deltas, extended odd holes and their blockers as minors; identically self-blocking clutters; exclusive, coexclusive and opposite pairs; ideal minimally non-packing clutters and the τ = 2 Conjecture; cuboids; cube-idealness; strict polarity; resistance; the sums of circuits property; and minimally non-ideal binary clutters and the f-Flowing Conjecture. While the first half of the thesis includes many broad and high-level contributions that are accessible to a non-expert reader, the second half contains three deep and technical contributions, namely, a character- ization of an infinite family of ideal minimally non-packing clutters, a structure theorem for ±1-resistant sets, and a characterization of the minimally non-ideal binary clutters with a member of cardinality three. In addition to developing the theory of ideal clutters, a main goal of the thesis is to trigger further research on ideal clutters. We hope to have achieved this by introducing a handful of new and exciting conjectures on ideal clutters
    corecore