1,250 research outputs found

    Packing ellipsoids with overlap

    Full text link
    The problem of packing ellipsoids of different sizes and shapes into an ellipsoidal container so as to minimize a measure of overlap between ellipsoids is considered. A bilevel optimization formulation is given, together with an algorithm for the general case and a simpler algorithm for the special case in which all ellipsoids are in fact spheres. Convergence results are proved and computational experience is described and illustrated. The motivating application - chromosome organization in the human cell nucleus - is discussed briefly, and some illustrative results are presented

    Finite Element Simulation of Dense Wire Packings

    Full text link
    A finite element program is presented to simulate the process of packing and coiling elastic wires in two- and three-dimensional confining cavities. The wire is represented by third order beam elements and embedded into a corotational formulation to capture the geometric nonlinearity resulting from large rotations and deformations. The hyperbolic equations of motion are integrated in time using two different integration methods from the Newmark family: an implicit iterative Newton-Raphson line search solver, and an explicit predictor-corrector scheme, both with adaptive time stepping. These two approaches reveal fundamentally different suitability for the problem of strongly self-interacting bodies found in densely packed cavities. Generalizing the spherical confinement symmetry investigated in recent studies, the packing of a wire in hard ellipsoidal cavities is simulated in the frictionless elastic limit. Evidence is given that packings in oblate spheroids and scalene ellipsoids are energetically preferred to spheres.Comment: 17 pages, 7 figures, 1 tabl

    Complexity in surfaces of densest packings for families of polyhedra

    Full text link
    Packings of hard polyhedra have been studied for centuries due to their mathematical aesthetic and more recently for their applications in fields such as nanoscience, granular and colloidal matter, and biology. In all these fields, particle shape is important for structure and properties, especially upon crowding. Here, we explore packing as a function of shape. By combining simulations and analytic calculations, we study three 2-parameter families of hard polyhedra and report an extensive and systematic analysis of the densest packings of more than 55,000 convex shapes. The three families have the symmetries of triangle groups (icosahedral, octahedral, tetrahedral) and interpolate between various symmetric solids (Platonic, Archimedean, Catalan). We find that optimal (maximum) packing density surfaces that reveal unexpected richness and complexity, containing as many as 130 different structures within a single family. Our results demonstrate the utility of thinking of shape not as a static property of an object in the context of packings, but rather as but one point in a higher dimensional shape space whose neighbors in that space may have identical or markedly different packings. Finally, we present and interpret our packing results in a consistent and generally applicable way by proposing a method to distinguish regions of packings and classify types of transitions between them.Comment: 16 pages, 8 figure

    Robust Algorithm to Generate a Diverse Class of Dense Disordered and Ordered Sphere Packings via Linear Programming

    Full text link
    We have formulated the problem of generating periodic dense paritcle packings as an optimization problem called the Adaptive Shrinking Cell (ASC) formulation [S. Torquato and Y. Jiao, Phys. Rev. E {\bf 80}, 041104 (2009)]. Because the objective function and impenetrability constraints can be exactly linearized for sphere packings with a size distribution in dd-dimensional Euclidean space Rd\mathbb{R}^d, it is most suitable and natural to solve the corresponding ASC optimization problem using sequential linear programming (SLP) techniques. We implement an SLP solution to produce robustly a wide spectrum of jammed sphere packings in Rd\mathbb{R}^d for d=2,3,4,5d=2,3,4,5 and 66 with a diversity of disorder and densities up to the maximally densities. This deterministic algorithm can produce a broad range of inherent structures besides the usual disordered ones with very small computational cost by tuning the radius of the {\it influence sphere}. In three dimensions, we show that it can produce with high probability a variety of strictly jammed packings with a packing density anywhere in the wide range [0.6,0.7408...][0.6, 0.7408...]. We also apply the algorithm to generate various disordered packings as well as the maximally dense packings for d=2,3,4,5d=2,3, 4,5 and 6. Compared to the LS procedure, our SLP protocol is able to ensure that the final packings are truly jammed, produces disordered jammed packings with anomalously low densities, and is appreciably more robust and computationally faster at generating maximally dense packings, especially as the space dimension increases.Comment: 34 pages, 6 figure

    Effective properties of composites with periodic random packing of ellipsoids

    Get PDF
    The aim of this paper is to evaluate the effective properties of composite materials with periodic random packing of ellipsoids of different volume fractions and aspect ratios. Therefore, we employ computational homogenization. A very efficient MD-based method is applied to generate the periodic random packing of the ellipsoids. The method is applicable even for extremely high volume fractions up to 60%. The influences of the volume fraction and aspect ratio on the effective properties of the composite materials are studied in several numerical examples.NSFC/51474157National Basic Research Program of China/973Shanghai Qimingxing Program/16QA1404000State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining & Technology Key/SKLGDUEK152

    Basic Understanding of Condensed Phases of Matter via Packing Models

    Full text link
    Packing problems have been a source of fascination for millenia and their study has produced a rich literature that spans numerous disciplines. Investigations of hard-particle packing models have provided basic insights into the structure and bulk properties of condensed phases of matter, including low-temperature states (e.g., molecular and colloidal liquids, crystals and glasses), multiphase heterogeneous media, granular media, and biological systems. The densest packings are of great interest in pure mathematics, including discrete geometry and number theory. This perspective reviews pertinent theoretical and computational literature concerning the equilibrium, metastable and nonequilibrium packings of hard-particle packings in various Euclidean space dimensions. In the case of jammed packings, emphasis will be placed on the "geometric-structure" approach, which provides a powerful and unified means to quantitatively characterize individual packings via jamming categories and "order" maps. It incorporates extremal jammed states, including the densest packings, maximally random jammed states, and lowest-density jammed structures. Packings of identical spheres, spheres with a size distribution, and nonspherical particles are also surveyed. We close this review by identifying challenges and open questions for future research.Comment: 33 pages, 20 figures, Invited "Perspective" submitted to the Journal of Chemical Physics. arXiv admin note: text overlap with arXiv:1008.298

    Machine learning approaches for the optimization of packing densities in granular matter.

    Get PDF
    The fundamental question of how densely granular matter can pack and how this density depends on the shape of the constituent particles has been a longstanding scientific problem. Previous work has mainly focused on empirical approaches based on simulations or mean-field theory to investigate the effect of shape variation on the resulting packing densities, focusing on a small set of pre-defined shapes like dimers, ellipsoids, and spherocylinders. Here we discuss how machine learning methods can support the search for optimally dense packing shapes in a high-dimensional shape space. We apply dimensional reduction and regression techniques based on random forests and neural networks to find novel dense packing shapes by numerical optimization. Moreover, an investigation of the regression function in the dimensionally reduced shape representation allows us to identify directions in the packing density landscape that lead to a strongly non-monotonic variation of the packing density. The predictions obtained by machine learning are compared with packing simulations. Our approach can be more widely applied to optimize the properties of granular matter by varying the shape of its constituent particles
    • …
    corecore