914 research outputs found

    Maximizing a Submodular Function with Bounded Curvature Under an Unknown Knapsack Constraint

    Get PDF
    This paper studies the problem of maximizing a monotone submodular function under an unknown knapsack constraint. A solution to this problem is a policy that decides which item to pack next based on the past packing history. The robustness factor of a policy is the worst case ratio of the solution obtained by following the policy and an optimal solution that knows the knapsack capacity. We develop an algorithm with a robustness factor that is decreasing in the curvature c of the submodular function. For the extreme cases c = 0 corresponding to a modular objective, it matches a previously known and best possible robustness factor of 1/2. For the other extreme case of c = 1 it yields a robustness factor of ? 0.35 improving over the best previously known robustness factor of ? 0.06

    General Bounds for Incremental Maximization

    Full text link
    We propose a theoretical framework to capture incremental solutions to cardinality constrained maximization problems. The defining characteristic of our framework is that the cardinality/support of the solution is bounded by a value k∈Nk\in\mathbb{N} that grows over time, and we allow the solution to be extended one element at a time. We investigate the best-possible competitive ratio of such an incremental solution, i.e., the worst ratio over all kk between the incremental solution after kk steps and an optimum solution of cardinality kk. We define a large class of problems that contains many important cardinality constrained maximization problems like maximum matching, knapsack, and packing/covering problems. We provide a general 2.6182.618-competitive incremental algorithm for this class of problems, and show that no algorithm can have competitive ratio below 2.182.18 in general. In the second part of the paper, we focus on the inherently incremental greedy algorithm that increases the objective value as much as possible in each step. This algorithm is known to be 1.581.58-competitive for submodular objective functions, but it has unbounded competitive ratio for the class of incremental problems mentioned above. We define a relaxed submodularity condition for the objective function, capturing problems like maximum (weighted) (bb-)matching and a variant of the maximum flow problem. We show that the greedy algorithm has competitive ratio (exactly) 2.3132.313 for the class of problems that satisfy this relaxed submodularity condition. Note that our upper bounds on the competitive ratios translate to approximation ratios for the underlying cardinality constrained problems.Comment: fixed typo
    • …
    corecore