3,079 research outputs found

    Signed shape tilings of squares

    Get PDF
    Let T be a tile in the Cartesian plane made up of finitely many rectangles whose corners have rational coordinates and whose sides are parallel to the coordinate axes. This paper gives necessary and sufficient conditions for a square to be tilable by finitely many \Q-weighted tiles with the same shape as T, and necessary and sufficient conditions for a square to be tilable by finitely many \Z-weighted tiles with the same shape as T. The main tool we use is a variant of F. W. Barnes's algebraic theory of brick packing, which converts tiling problems into problems in commutative algebra.Comment: LaTeX, 14 pages, to appear in Discrete Mathematics. This version differs from the original only cosmeticall

    Approximating Geometric Knapsack via L-packings

    Full text link
    We study the two-dimensional geometric knapsack problem (2DK) in which we are given a set of n axis-aligned rectangular items, each one with an associated profit, and an axis-aligned square knapsack. The goal is to find a (non-overlapping) packing of a maximum profit subset of items inside the knapsack (without rotating items). The best-known polynomial-time approximation factor for this problem (even just in the cardinality case) is (2 + \epsilon) [Jansen and Zhang, SODA 2004]. In this paper, we break the 2 approximation barrier, achieving a polynomial-time (17/9 + \epsilon) < 1.89 approximation, which improves to (558/325 + \epsilon) < 1.72 in the cardinality case. Essentially all prior work on 2DK approximation packs items inside a constant number of rectangular containers, where items inside each container are packed using a simple greedy strategy. We deviate for the first time from this setting: we show that there exists a large profit solution where items are packed inside a constant number of containers plus one L-shaped region at the boundary of the knapsack which contains items that are high and narrow and items that are wide and thin. As a second major and the main algorithmic contribution of this paper, we present a PTAS for this case. We believe that this will turn out to be useful in future work in geometric packing problems. We also consider the variant of the problem with rotations (2DKR), where items can be rotated by 90 degrees. Also, in this case, the best-known polynomial-time approximation factor (even for the cardinality case) is (2 + \epsilon) [Jansen and Zhang, SODA 2004]. Exploiting part of the machinery developed for 2DK plus a few additional ideas, we obtain a polynomial-time (3/2 + \epsilon)-approximation for 2DKR, which improves to (4/3 + \epsilon) in the cardinality case.Comment: 64pages, full version of FOCS 2017 pape

    On Semantic Word Cloud Representation

    Full text link
    We study the problem of computing semantic-preserving word clouds in which semantically related words are close to each other. While several heuristic approaches have been described in the literature, we formalize the underlying geometric algorithm problem: Word Rectangle Adjacency Contact (WRAC). In this model each word is associated with rectangle with fixed dimensions, and the goal is to represent semantically related words by ensuring that the two corresponding rectangles touch. We design and analyze efficient polynomial-time algorithms for some variants of the WRAC problem, show that several general variants are NP-hard, and describe a number of approximation algorithms. Finally, we experimentally demonstrate that our theoretically-sound algorithms outperform the early heuristics

    An Efficient Data Structure for Dynamic Two-Dimensional Reconfiguration

    Full text link
    In the presence of dynamic insertions and deletions into a partially reconfigurable FPGA, fragmentation is unavoidable. This poses the challenge of developing efficient approaches to dynamic defragmentation and reallocation. One key aspect is to develop efficient algorithms and data structures that exploit the two-dimensional geometry of a chip, instead of just one. We propose a new method for this task, based on the fractal structure of a quadtree, which allows dynamic segmentation of the chip area, along with dynamically adjusting the necessary communication infrastructure. We describe a number of algorithmic aspects, and present different solutions. We also provide a number of basic simulations that indicate that the theoretical worst-case bound may be pessimistic.Comment: 11 pages, 12 figures; full version of extended abstract that appeared in ARCS 201

    Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack

    Get PDF
    The area of parameterized approximation seeks to combine approximation and parameterized algorithms to obtain, e.g., (1+epsilon)-approximations in f(k,epsilon)n^O(1) time where k is some parameter of the input. The goal is to overcome lower bounds from either of the areas. We obtain the following results on parameterized approximability: - In the maximum independent set of rectangles problem (MISR) we are given a collection of n axis parallel rectangles in the plane. Our goal is to select a maximum-cardinality subset of pairwise non-overlapping rectangles. This problem is NP-hard and also W[1]-hard [Marx, ESA\u2705]. The best-known polynomial-time approximation factor is O(log log n) [Chalermsook and Chuzhoy, SODA\u2709] and it admits a QPTAS [Adamaszek and Wiese, FOCS\u2713; Chuzhoy and Ene, FOCS\u2716]. Here we present a parameterized approximation scheme (PAS) for MISR, i.e. an algorithm that, for any given constant epsilon>0 and integer k>0, in time f(k,epsilon)n^g(epsilon), either outputs a solution of size at least k/(1+epsilon), or declares that the optimum solution has size less than k. - In the (2-dimensional) geometric knapsack problem (2DK) we are given an axis-aligned square knapsack and a collection of axis-aligned rectangles in the plane (items). Our goal is to translate a maximum cardinality subset of items into the knapsack so that the selected items do not overlap. In the version of 2DK with rotations (2DKR), we are allowed to rotate items by 90 degrees. Both variants are NP-hard, and the best-known polynomial-time approximation factor is 2+epsilon [Jansen and Zhang, SODA\u2704]. These problems admit a QPTAS for polynomially bounded item sizes [Adamaszek and Wiese, SODA\u2715]. We show that both variants are W[1]-hard. Furthermore, we present a PAS for 2DKR. For all considered problems, getting time f(k,epsilon)n^O(1), rather than f(k,epsilon)n^g(epsilon), would give FPT time f\u27(k)n^O(1) exact algorithms by setting epsilon=1/(k+1), contradicting W[1]-hardness. Instead, for each fixed epsilon>0, our PASs give (1+epsilon)-approximate solutions in FPT time. For both MISR and 2DKR our techniques also give rise to preprocessing algorithms that take n^g(epsilon) time and return a subset of at most k^g(epsilon) rectangles/items that contains a solution of size at least k/(1+epsilon) if a solution of size k exists. This is a special case of the recently introduced notion of a polynomial-size approximate kernelization scheme [Lokshtanov et al., STOC\u2717]
    • …
    corecore