3,378 research outputs found

    A novel hybrid intelligence approach for 2D packing through Internet crowdsourcing

    Get PDF
    Packing problems on its current state are being utilized for wide area of industrial applications. The aim of present research is to create and implement an intelligent system that tackles the problem of 2D packing of objects inside a 2D container, such that objects do not overlap and the container area is to be maximized. The packing problem becomes easier, when regular/rectangular objects and container are used. In most of the practical situations, the usage of irregular objects comes to existence. To solve the packing problem of irregular objects inside a rectangular container, a hybrid intelligence approach is introduced in our proposed work. The combination of machine intelligence and human intelligence is referred as the hybrid intelligence or semi-automated approach in the proposed methodology. The incorporation of human intelligence in the outcome of machine intelligence is possible to obtain using the internet crowdsourcing as we wish to handle the packing problem through internet crowdsourcing involving rural people. The proposed methodology is tested on different standard data sets and it is observed that it has clear advantage over both manual as well as fully automated heuristic based methods in terms of time and space efficiency

    Supervised Autonomous Locomotion and Manipulation for Disaster Response with a Centaur-like Robot

    Full text link
    Mobile manipulation tasks are one of the key challenges in the field of search and rescue (SAR) robotics requiring robots with flexible locomotion and manipulation abilities. Since the tasks are mostly unknown in advance, the robot has to adapt to a wide variety of terrains and workspaces during a mission. The centaur-like robot Centauro has a hybrid legged-wheeled base and an anthropomorphic upper body to carry out complex tasks in environments too dangerous for humans. Due to its high number of degrees of freedom, controlling the robot with direct teleoperation approaches is challenging and exhausting. Supervised autonomy approaches are promising to increase quality and speed of control while keeping the flexibility to solve unknown tasks. We developed a set of operator assistance functionalities with different levels of autonomy to control the robot for challenging locomotion and manipulation tasks. The integrated system was evaluated in disaster response scenarios and showed promising performance.Comment: In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, October 201

    Learning Physically Realizable Skills for Online Packing of General 3D Shapes

    Full text link
    We study the problem of learning online packing skills for irregular 3D shapes, which is arguably the most challenging setting of bin packing problems. The goal is to consecutively move a sequence of 3D objects with arbitrary shapes into a designated container with only partial observations of the object sequence. Meanwhile, we take physical realizability into account, involving physics dynamics and constraints of a placement. The packing policy should understand the 3D geometry of the object to be packed and make effective decisions to accommodate it in the container in a physically realizable way. We propose a Reinforcement Learning (RL) pipeline to learn the policy. The complex irregular geometry and imperfect object placement together lead to huge solution space. Direct training in such space is prohibitively data intensive. We instead propose a theoretically-provable method for candidate action generation to reduce the action space of RL and the learning burden. A parameterized policy is then learned to select the best placement from the candidates. Equipped with an efficient method of asynchronous RL acceleration and a data preparation process of simulation-ready training sequences, a mature packing policy can be trained in a physics-based environment within 48 hours. Through extensive evaluation on a variety of real-life shape datasets and comparisons with state-of-the-art baselines, we demonstrate that our method outperforms the best-performing baseline on all datasets by at least 12.8% in terms of packing utility.Comment: ACM Transactions on Graphics (TOG

    Learning Gradient Fields for Scalable and Generalizable Irregular Packing

    Full text link
    The packing problem, also known as cutting or nesting, has diverse applications in logistics, manufacturing, layout design, and atlas generation. It involves arranging irregularly shaped pieces to minimize waste while avoiding overlap. Recent advances in machine learning, particularly reinforcement learning, have shown promise in addressing the packing problem. In this work, we delve deeper into a novel machine learning-based approach that formulates the packing problem as conditional generative modeling. To tackle the challenges of irregular packing, including object validity constraints and collision avoidance, our method employs the score-based diffusion model to learn a series of gradient fields. These gradient fields encode the correlations between constraint satisfaction and the spatial relationships of polygons, learned from teacher examples. During the testing phase, packing solutions are generated using a coarse-to-fine refinement mechanism guided by the learned gradient fields. To enhance packing feasibility and optimality, we introduce two key architectural designs: multi-scale feature extraction and coarse-to-fine relation extraction. We conduct experiments on two typical industrial packing domains, considering translations only. Empirically, our approach demonstrates spatial utilization rates comparable to, or even surpassing, those achieved by the teacher algorithm responsible for training data generation. Additionally, it exhibits some level of generalization to shape variations. We are hopeful that this method could pave the way for new possibilities in solving the packing problem

    A simple and effective geometric representation for irregular porous structure modeling

    Get PDF
    Computer-aided design of porous structures is a challenging task because of the high degree of irregularity and intricacy associated with the geometries. Most of the existing design approaches either target designing artifacts with regular-shaped pores or reconstructing geometric models from existing porous objects. For regular porous structures, it is difficult to control the pore shapes and distributions locally; for reconstructed models, a design is attainable only if there are some existing objects to reconstruct from. This paper is motivated to present an alternative approach to design irregular porous artifacts with controllable pore shapes and distributions, yet without requiring any existing objects as prerequisites. Inspired by the random colloid-aggregation model which explains the formation mechanism of random porous media, Voronoi tessellation is first generated to partition the space into a collection of compartments. Selective compartments are then merged together to imitate the random colloid aggregations. Through this Voronoi cell merging, irregular convex and concave polygons are obtained and the vertices of which are modeled as control points of closed B-Spline curves. The fitted B-Spline curves are then employed to represent the boundaries of the irregular-shaped pores. The proposed approach drastically improved the ease of irregular porous structure modeling while at the same time properly maintained the irregularity that is widely found in natural objects. Compared with other existing CAD approaches, the proposed approach can easily construct irregular porous structures which appear more natural and realistic. © 2010 Elsevier Ltd. All rights reserved.postprin

    Volumetric Techniques for Product Routing and Loading Optimisation in Industry 4.0: A Review

    Get PDF
    Industry 4.0 has become a crucial part in the majority of processes, components, and related modelling, as well as predictive tools that allow a more efficient, automated and sustainable approach to industry. The availability of large quantities of data, and the advances in IoT, AI, and data-driven frameworks, have led to an enhanced data gathering, assessment, and extraction of actionable information, resulting in a better decision-making process. Product picking and its subsequent packing is an important area, and has drawn increasing attention for the research community. However, depending of the context, some of the related approaches tend to be either highly mathematical, or applied to a specific context. This article aims to provide a survey on the main methods, techniques, and frameworks relevant to product packing and to highlight the main properties and features that should be further investigated to ensure a more efficient and optimised approach
    corecore