10 research outputs found

    Packing Cycles Faster Than Erdos-Posa

    Get PDF

    Packing cycles faster than Erdos-Posa

    Get PDF
    The Cycle Packing problem asks whether a given undirected graph G=(V,E)G=(V,E) contains kk vertex-disjoint cycles. Since the publication of the classic Erdös--Pósa theorem in 1965, this problem received significant attention in the fields of graph theory and algorithm design. In particular, this problem is one of the first problems studied in the framework of parameterized complexity. The nonuniform fixed-parameter tractability of Cycle Packing follows from the Robertson--Seymour theorem, a fact already observed by Fellows and Langston in the 1980s. In 1994, Bodlaender showed that Cycle Packing can be solved in time 2O(k2)V2^{\mathcal{O}(k^2)}\cdot |V| using exponential space. In the case a solution exists, Bodlaender's algorithm also outputs a solution (in the same time). It has later become common knowledge that Cycle Packing admits a 2O(klog2k)V2^{\mathcal{O}(k\log^2k)}\cdot |V|-time (deterministic) algorithm using exponential space, which is a consequence of the Erdös--Pósa theorem. Nowadays, the design of this algorithm is given as an exercise in textbooks on parameterized complexity. Yet, no algorithm that runs in time 2o(klog2k)VO(1)2^{o(k\log^2k)}\cdot |V|^{\mathcal{O}(1)}, beating the bound 2O(klog2k)VO(1)2^{\mathcal{O}(k\log^2k)}\cdot |V|^{\mathcal{O}(1)}, has been found. In light of this, it seems natural to ask whetherthe 2O(klog2k)VO(1)2^{\mathcal{O}(k\log^2k)}\cdot |V|^{\mathcal{O}(1)} bound is essentially optimal. In this paper, we answer this question negatively by developing a 2O(klog2kloglogk)V2^{\mathcal{O}(\frac{k\log^2k}{\log\log k})}\cdot |V|-time (deterministic) algorithm for Cycle Packing. In the case a solution exists, our algorithm also outputs a solution (in the same time). Moreover, apart from beating the bound 2O(klog2k)VO(1)2^{\mathcal{O}(k\log^2k)}\cdot |V|^{\mathcal{O}(1)}, our algorithm runs in time linear in V|V|, and its space complexity is polynomial in the input size.publishedVersio

    Parameterization Above a Multiplicative Guarantee

    Get PDF
    Parameterization above a guarantee is a successful paradigm in Parameterized Complexity. To the best of our knowledge, all fixed-parameter tractable problems in this paradigm share an additive form defined as follows. Given an instance (I,k) of some (parameterized) problem ? with a guarantee g(I), decide whether I admits a solution of size at least (at most) k+g(I). Here, g(I) is usually a lower bound (resp. upper bound) on the maximum (resp. minimum) size of a solution. Since its introduction in 1999 for Max SAT and Max Cut (with g(I) being half the number of clauses and half the number of edges, respectively, in the input), analysis of parameterization above a guarantee has become a very active and fruitful topic of research. We highlight a multiplicative form of parameterization above a guarantee: Given an instance (I,k) of some (parameterized) problem ? with a guarantee g(I), decide whether I admits a solution of size at least (resp. at most) k ? g(I). In particular, we study the Long Cycle problem with a multiplicative parameterization above the girth g(I) of the input graph, and provide a parameterized algorithm for this problem. Apart from being of independent interest, this exemplifies how parameterization above a multiplicative guarantee can arise naturally. We also show that, for any fixed constant ?>0, multiplicative parameterization above g(I)^(1+?) of Long Cycle yields para-NP-hardness, thus our parameterization is tight in this sense. We complement our main result with the design (or refutation of the existence) of algorithms for other problems parameterized multiplicatively above girth

    A Survey on Approximation in Parameterized Complexity: Hardness and Algorithms

    Get PDF
    Parameterization and approximation are two popular ways of coping with NP-hard problems. More recently, the two have also been combined to derive many interesting results. We survey developments in the area both from the algorithmic and hardness perspectives, with emphasis on new techniques and potential future research directions

    Deterministic Decremental Reachability, SCC, and Shortest Paths via Directed Expanders and Congestion Balancing

    Full text link
    Let G=(V,E,w)G = (V,E,w) be a weighted, digraph subject to a sequence of adversarial edge deletions. In the decremental single-source reachability problem (SSR), we are given a fixed source ss and the goal is to maintain a data structure that can answer path-queries svs \rightarrowtail v for any vVv \in V. In the more general single-source shortest paths (SSSP) problem the goal is to return an approximate shortest path to vv, and in the SCC problem the goal is to maintain strongly connected components of GG and to answer path queries within each component. All of these problems have been very actively studied over the past two decades, but all the fast algorithms are randomized and, more significantly, they can only answer path queries if they assume a weaker model: they assume an oblivious adversary which is not adaptive and must fix the update sequence in advance. This assumption significantly limits the use of these data structures, most notably preventing them from being used as subroutines in static algorithms. All the above problems are notoriously difficult in the adaptive setting. In fact, the state-of-the-art is still the Even and Shiloach tree, which dates back all the way to 1981 and achieves total update time O(mn)O(mn). We present the first algorithms to break through this barrier: 1) deterministic decremental SSR/SCC with total update time mn2/3+o(1)mn^{2/3 + o(1)} 2) deterministic decremental SSSP with total update time n2+2/3+o(1)n^{2+2/3+o(1)}. To achieve these results, we develop two general techniques of broader interest for working with dynamic graphs: 1) a generalization of expander-based tools to dynamic directed graphs, and 2) a technique that we call congestion balancing and which provides a new method for maintaining flow under adversarial deletions. Using the second technique, we provide the first near-optimal algorithm for decremental bipartite matching.Comment: Reuploaded with some generalizations of previous theorem

    Packing cycles faster than Erdos-Posa

    No full text
    The Cycle Packing problem asks whether a given undirected graph G=(V,E)G=(V,E) contains kk vertex-disjoint cycles. Since the publication of the classic Erdös--Pósa theorem in 1965, this problem received significant attention in the fields of graph theory and algorithm design. In particular, this problem is one of the first problems studied in the framework of parameterized complexity. The nonuniform fixed-parameter tractability of Cycle Packing follows from the Robertson--Seymour theorem, a fact already observed by Fellows and Langston in the 1980s. In 1994, Bodlaender showed that Cycle Packing can be solved in time 2O(k2)V2^{\mathcal{O}(k^2)}\cdot |V| using exponential space. In the case a solution exists, Bodlaender's algorithm also outputs a solution (in the same time). It has later become common knowledge that Cycle Packing admits a 2O(klog2k)V2^{\mathcal{O}(k\log^2k)}\cdot |V|-time (deterministic) algorithm using exponential space, which is a consequence of the Erdös--Pósa theorem. Nowadays, the design of this algorithm is given as an exercise in textbooks on parameterized complexity. Yet, no algorithm that runs in time 2o(klog2k)VO(1)2^{o(k\log^2k)}\cdot |V|^{\mathcal{O}(1)}, beating the bound 2O(klog2k)VO(1)2^{\mathcal{O}(k\log^2k)}\cdot |V|^{\mathcal{O}(1)}, has been found. In light of this, it seems natural to ask whetherthe 2O(klog2k)VO(1)2^{\mathcal{O}(k\log^2k)}\cdot |V|^{\mathcal{O}(1)} bound is essentially optimal. In this paper, we answer this question negatively by developing a 2O(klog2kloglogk)V2^{\mathcal{O}(\frac{k\log^2k}{\log\log k})}\cdot |V|-time (deterministic) algorithm for Cycle Packing. In the case a solution exists, our algorithm also outputs a solution (in the same time). Moreover, apart from beating the bound 2O(klog2k)VO(1)2^{\mathcal{O}(k\log^2k)}\cdot |V|^{\mathcal{O}(1)}, our algorithm runs in time linear in V|V|, and its space complexity is polynomial in the input size

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    Linear and nonlinear approaches to unravel dynamics and connectivity in neuronal cultures

    Get PDF
    [eng] In the present thesis, we propose to explore neuronal circuits at the mesoscale, an approach in which one monitors small populations of few thousand neurons and concentrates in the emergence of collective behavior. In our case, we carried out such an exploration both experimentally and numerically, and by adopting an analysis perspective centered on time series analysis and dynamical systems. Experimentally, we used neuronal cultures and prepared more than 200 of them, which were monitored using fluorescence calcium imaging. By adjusting the experimental conditions, we could set two basic arrangements of neurons, namely homogeneous and aggregated. In the experiments, we carried out two major explorations, namely development and disintegration. In the former we investigated changes in network behavior as it matured; in the latter we applied a drug that reduced neuronal interconnectivity. All the subsequent analyses and modeling along the thesis are based on these experimental data. Numerically, the thesis comprised two aspects. The first one was oriented towards a simulation of neuronal connectivity and dynamics. The second one was oriented towards the development of linear and nonlinear analysis tools to unravel dynamic and connectivity aspects of the measured experimental networks. For the first aspect, we developed a sophisticated software package to simulate single neuronal dynamics using a quadratic integrate–and–fire model with adaptation and depression. This model was plug into a synthetic graph in which the nodes of the network are neurons, and the edges connections. The graph was created using spatial embedding and realistic biology. We carried out hundreds of simulations in which we tuned the density of neurons, their spatial arrangement and the characteristics of the fluorescence signal. As a key result, we observed that homogeneous networks required a substantial number of neurons to fire and exhibit collective dynamics, and that the presence of aggregation significantly reduced the number of required neurons. For the second aspect, data analysis, we analyzed experiments and simulations to tackle three major aspects: network dynamics reconstruction using linear descriptions, dynamics reconstruction using nonlinear descriptors, and the assessment of neuronal connectivity from solely activity data. For the linear study, we analyzed all experiments using the power spectrum density (PSD), and observed that it was sufficiently good to describe the development of the network or its disintegration. PSD also allowed us to distinguish between healthy and unhealthy networks, and revealed dynamical heterogeneities across the network. For the nonlinear study, we used techniques in the context of recurrence plots. We first characterized the embedding dimension m and the time delay δ for each experiment, built the respective recurrence plots, and extracted key information of the dynamics of the system through different descriptors. Experimental results were contrasted with numerical simulations. After analyzing about 400 time series, we concluded that the degree of dynamical complexity in neuronal cultures changes both during development and disintegration. We also observed that the healthier the culture, the higher its dynamic complexity. Finally, for the reconstruction study, we first used numerical simulations to determine the best measure of ‘statistical interdependence’ among any two neurons, and took Generalized Transfer Entropy. We then analyzed the experimental data. We concluded that young cultures have a weak connectivity that increases along maturation. Aggregation increases average connectivity, and more interesting, also the assortativity, i.e. the tendency of highly connected nodes to connect with other highly connected node. In turn, this assortativity may delineates important aspects of the dynamics of the network. Overall, the results show that spatial arrangement and neuronal dynamics are able to shape a very rich repertoire of dynamical states of varying complexity.[cat] L’habilitat dels teixits neuronals de processar i transmetre informació de forma eficient depèn de les propietats dinàmiques intrínseques de les neurones i de la connectivitat entre elles. La present tesi proposa explorar diferents tècniques experimentals i de simulació per analitzar la dinàmica i connectivitat de xarxes neuronals corticals de rata embrionària. Experimentalment, la gravació de l’activitat espontània d’una població de neurones en cultiu, mitjançant una càmera ràpida i tècniques de fluorescència, possibilita el seguiment de forma controlada de l’activitat individual de cada neurona, així com la modificació de la seva connectivitat. En conjunt, aquestes eines permeten estudiar el comportament col.lectiu emergent de la població neuronal. Amb l’objectiu de simular els patrons observats en el laboratori, hem implementat un model mètric aleatori de creixement neuronal per simular la xarxa física de connexions entre neurones, i un model quadràtic d’integració i dispar amb adaptació i depressió per modelar l’ampli espectre de dinàmiques neuronals amb un cost computacional reduït. Hem caracteritzat la dinàmica global i individual de les neurones i l’hem correlacionat amb la seva estructura subjacent mitjançant tècniques lineals i no–lineals de series temporals. L’anàlisi espectral ens ha possibilitat la descripció del desenvolupament i els canvis en connectivitat en els cultius, així com la diferenciació entre cultius sans dels patològics. La reconstrucció de la dinàmica subjacent mitjançant mètodes d’incrustació i l’ús de gràfics de recurrència ens ha permès detectar diferents transicions dinàmiques amb el corresponent guany o pèrdua de la complexitat i riquesa dinàmica del cultiu durant els diferents estudis experimentals. Finalment, a fi de reconstruir la connectivitat interna hem testejat, mitjançant simulacions, diferents quantificadors per mesurar la dependència estadística entre neurona i neurona, seleccionant finalment el mètode de transferència d’entropia gereralitzada. Seguidament, hem procedit a caracteritzar les xarxes amb diferents paràmetres. Malgrat presentar certs tres de xarxes tipus ‘petit món’, els nostres cultius mostren una distribució de grau ‘exponencial’ o ‘esbiaixada’ per, respectivament, cultius joves i madurs. Addicionalment, hem observat que les xarxes homogènies presenten la propietat de disassortativitat, mentre que xarxes amb un creixent nivell d’agregació espaial presenten assortativitat. Aquesta propietat impacta fortament en la transmissió, resistència i sincronització de la xarxa

    The drivers of Corporate Social Responsibility in the supply chain. A case study.

    Get PDF
    Purpose: The paper studies the way in which a SME integrates CSR into its corporate strategy, the practices it puts in place and how its CSR strategies reflect on its suppliers and customers relations. Methodology/Research limitations: A qualitative case study methodology is used. The use of a single case study limits the generalizing capacity of these findings. Findings: The entrepreneur’s ethical beliefs and value system play a fundamental role in shaping sustainable corporate strategy. Furthermore, the type of competitive strategy selected based on innovation, quality and responsibility clearly emerges both in terms of well defined management procedures and supply chain relations as a whole aimed at involving partners in the process of sustainable innovation. Originality/value: The paper presents a SME that has devised an original innovative business model. The study pivots on the issues of innovation and eco-sustainability in a context of drivers for CRS and business ethics. These values are considered fundamental at International level; the United Nations has declared 2011 the “International Year of Forestry”

    Handbook of Mathematical Geosciences

    Get PDF
    This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences
    corecore