475 research outputs found

    Joint buffer management and scheduling for input queued switches

    Get PDF
    Input queued (IQ) switches are highly scalable and they have been the focus of many studies from academia and industry. Many scheduling algorithms have been proposed for IQ switches. However, they do not consider the buffer space requirement inside an IQ switch that may render the scheduling algorithms inefficient in practical applications. In this dissertation, the Queue Length Proportional (QLP) algorithm is proposed for IQ switches. QLP considers both the buffer management and the scheduling mechanism to obtain the optimal allocation region for both bandwidth and buffer space according to real traffic load. In addition, this dissertation introduces the Queue Proportional Fairness (QPF) criterion, which employs the cell loss ratio as the fairness metric. The research in this dissertation will show that the utilization of network resources will be improved significantly with QPF. Furthermore, to support diverse Quality of Service (QoS) requirements of heterogeneous and bursty traffic, the Weighted Minmax algorithm (WMinmax) is proposed to efficiently and dynamically allocate network resources. Lastly, to support traffic with multiple priorities and also to handle the decouple problem in practice, this dissertation introduces the multiple dimension scheduling algorithm which aims to find the optimal scheduling region in the multiple Euclidean space

    On packet switch design

    Get PDF

    On scheduling input queued cell switches

    Get PDF
    Output-queued switching, though is able to offer high throughput, guaranteed delay and fairness, lacks scalability owing to the speed up problem. Input-queued switching, on the other hand, is scalable, and is thus becoming an attractive alternative. This dissertation presents three approaches toward resolving the major problem encountered in input-queued switching that has prohibited the provision of quality of service guarantees. First, we proposed a maximum size matching based algorithm, referred to as min-max fair input queueing (MFIQ), which minimizes the additional delay caused by back pressure, and at the same time provides fair service among competing sessions. Like any maximum size matching algorithm, MFIQ performs well for uniform traffic, in which the destinations of the incoming cells are uniformly distributed over all the outputs, but is not stable for non-uniform traffic. Subse-quently, we proposed two maximum weight matching based algorithms, longest normalized queue first (LNQF) and earliest due date first matching (EDDFM), which are stable for both uniform and non-uniform traffic. LNQF provides fairer service than longest queue first (LQF) and better traffic shaping than oldest cell first (OCF), and EDDEM has lower probability of delay overdue than LQF, LNQF, and OCF. Our third approach, referred to as store-sort-and-forward (SSF), is a frame based scheduling algorithm. SSF is proved to be able to achieve strict sense 100% throughput, and provide bounded delay and delay jitter for input-queued switches if the traffic conforms to the (r, T) model

    Design of switch architecture for the geographical cell transport protocol

    Get PDF
    The Internet is divided into multiple layers to reduce and manage complexity. The International Organization for Standardization (ISO) developed a 7 layer network model and had been revised to a 5 layer TCP/IP based Internet Model. The layers of the Internet can also be divided into top layer TCP/IP protocol suite layers and the underlying transport network layers. SONET/SDH, a dominant transport network, was designed initially for circuit based telephony services. Advancement in the internet world with voice and video services had pushed SONET/SDH to operate with reduced efficiencies and increased costs. Hence, redesign and redeployment of the transport network has been and continues to be a subject of research and development. Several projects are underway to explore new transport network ideas such as G.709 and GMPLS. This dissertation presents the Geographical Cell Transport (GCT) protocol as a candidate for a next generation transport network. The GCT transport protocol and its cell format are described. The benefits provided by the proposed GCT transport protocol as compared to the existing transport networks are investigated. Existing switch architectures are explored and a best architecture to be implemented in VLSI for the proposed transport network input queued virtual output queuing is obtained. The objectives of this switch are high performance, guaranteed fairness among all inputs and outputs, robust behavior under different traffic patterns, and support for Quality of Service (QoS) provisioning. An implementation of this switch architecture is carried out using HDL. A novel pseudo random number generation unit is designed to nullify the bias present in an arbitration unit. The validity of the designed is checked by developing a traffic load model. The speedup factor required in the switch to maintain desired throughput is explored and is presented in detail. Various simulation results are shown to study the behavior of the designed switch under uniform and hotspot traffic. The simulation results show that QoS behavior and the crossing traffic through the switch has not been affected by hotspots

    Fluid flow queue models for fixed-mobile network evaluation

    Get PDF
    A methodology for fast and accurate end-to-end KPI, like throughput and delay, estimation is proposed based on the service-centric traffic flow analysis and the fluid flow queuing model named CURSA-SQ. Mobile network features, like shared medium and mobility, are considered defining the models to be taken into account such as the propagation models and the fluid flow scheduling model. The developed methodology provides accurate computation of these KPIs, while performing orders of magnitude faster than discrete event simulators like ns-3. Finally, this methodology combined to its capacity for performance estimation in MPLS networks enables its application for near real-time converged fixed-mobile networks operation as it is proven in three use case scenarios

    Hybrid switching : converging packet and TDM flows in a single platform

    Get PDF
    Optical fibers have brought fast and reliable data transmission to today’s network. The immense fiber build-out over the last few years has generated a wide array of new access technologies, transport and network protocols, and next-generation services in the Local Area Network (LAN), Metropolitan Area Network (MAN), and Wide Area Network (WAN). All these different technologies, protocols, and services were introduced to address particular telecommunication needs. To remain competitive in the market, the service providers must offer most of these services, while maintaining their own profitability. However, offering a large variety of equipment, protocols, and services posses a big challenge for service carriers because it requires a huge investment in different technology platforms, lots of training of staff, and the management of all these networks. In today’s network, service providers use SONET (Synchronous Optical NETwork) as a basic TDM (Time Division Multiplexing) transport network. SONET was primarily designed to carry voice traffic from telephone networks. However, with the explosion of traffic in the Internet, the same SONET based TDM network is optimized to support increasing demand for packet based Internet network services (data, voice, video, teleconference etc.) at access networks and LANs. Therefore the service providers need to support their Internet Protocol (IP) infrastructure as well as in the legacy telephony infrastructure. Supporting both TDM and packet services in the present condition needs multilayer operations which is complex, expensive, and difficult to manage. A hybrid switch is a novel architecture that combines packets (IP) and TDM switching in a unified access platform and provides seamless integration of access networks and LANs with MAN/WAN networks. The ability to fully integrate these two capabilities in a single chassis will allow service providers to deploy a more cost effective and flexible architecture that can support a variety of different services. This thesis develops a hybrid switch which is capable of offering bundled services for TDM switching and packet routing. This is done by dividing the switch’s bandwidth into VT1.5 (Virtual Tributary -1.5) channels and providing SONET based signaling for routing the data and controlling the switch’s resources. The switch is a TDM based architecture which allows each switch’s port to be independently configured for any mixture of packet and TDM traffic, including 100% packet and 100% TDM. This switch allows service providers to simplify their edge networks by consolidating the number of separate boxes needed to provide fast and reliable access. This switch also reduces the number of network management systems needed, and decreases the resources needed to install, provision and maintain the network because of its ability to “collapse” two network layers into one platform. The scope of this thesis includes system architecture, logic implementation, and verification testing, and performance evaluation of the hybrid switch. The architecture consists of ingress/egress ports, an arbiter and a crossbar. Data from ingress ports is carried to the egress ports via VT1.5 channels which are switched at the cross point of the crossbar. The crossbar setup and channel assignments at ingress port are done by the arbiter. The design was tested by simulation and the hardware cost was estimated. The performance results showed that the switch is non-blocking, provide differentiated service, and has an overall effective throughput of 80%. This result is a significant step towards the goal of building a switch that can support multiprotocol and provide different network capabilities into one platform. The long-term goal of this project is to develop a prototype of the hybrid switch with broadband capability
    • 

    corecore