385 research outputs found

    Direct Telemetry Access

    Get PDF
    Fine-grained network telemetry is becoming a modern datacenter standard and is the basis of essential applications such as congestion control, load balancing, and advanced troubleshooting. As network size increases and telemetry gets more fine-grained, there is a tremendous growth in the amount of data needed to be reported from switches to collectors to enable network-wide view. As a consequence, it is progressively hard to scale data collection systems.We introduce Direct Telemetry Access (DTA), a solution optimized for aggregating and moving hundreds of millions of reports per second from switches into queryable data structures in collectors' memory. DTA is lightweight and it is able to greatly reduce overheads at collectors. DTA is built on top of RDMA, and we propose novel and expressive reporting primitives to allow easy integration with existing state-of-the-art telemetry mechanisms such as INT or Marple.We show that DTA significantly improves telemetry collection rates. For example, when used with INT, it can collect and aggregate over 400M reports per second with a single server, improving over the Atomic MultiLog by up to 16x

    Hardware-Software Co-Design for Network Performance Measurement

    Get PDF
    Diagnosing performance problems in networks is important, for example to determine where packets experience high latency or loss. However, existing performance diagnoses are constrained by limited switch mechanisms for measurement. Alternatively, operators use endpoint information indirectly to infer root causes for problematic latency or drops. Instead of designing piecemeal solutions to work around such switch restrictions, we believe that the right approach is to co-design language abstractions and switch hardware primitives for network performance measurement. This approach provides confidence that the switch primitives are sufficiently general, i.e., they can support a variety of existing and unanticipated use cases. We present a declarative query language that allows operators to ask a diverse set of network performance questions. We show that these queries can be implemented efficiently in switch hardware using a novel programmable key-value store primitive. Our preliminary evaluations show that our hardware design is feasible at modest chip area overhead relative to existing switching chips
    • …
    corecore