7,192 research outputs found

    Video TFRC

    Get PDF
    TCP-friendly rate control (TFRC) is a congestion control technique that trade-offs responsiveness to the network conditions for a smoother throughput variation. We take advantage of this trade-off by calculating the rate gap between the theoretical TCP throughput and the smoothed TFRC throughput. Any rate gain from this rate gap is then opportunistically used for video coding. We define a frame complexity measure to determine the additional rate to be used from the rate gap and then perform a rate negotiation to determine the target rate for the encoder and the final sending rate. Results show that although this method has a more aggressive sending rate compared to TFRC, it is still TCP friendly, does not contribute too much to network congestion and achieves a reasonable video quality gain over the conventional method

    Smart PIN: utility-based replication and delivery of multimedia content to mobile users in wireless networks

    Get PDF
    Next generation wireless networks rely on heterogeneous connectivity technologies to support various rich media services such as personal information storage, file sharing and multimedia streaming. Due to users’ mobility and dynamic characteristics of wireless networks, data availability in collaborating devices is a critical issue. In this context Smart PIN was proposed as a personal information network which focuses on performance of delivery and cost efficiency. Smart PIN uses a novel data replication scheme based on individual and overall system utility to best balance the requirements for static data and multimedia content delivery with variable device availability due to user mobility. Simulations show improved results in comparison with other general purpose data replication schemes in terms of data availability

    Network Awareness of P2P Live Streaming Applications

    Get PDF
    Early P2P-TV systems have already attracted millions of users, and many new commercial solutions are entering this market. Little information is however available about how these systems work. In this paper we present large scale sets of experiments to compare three of the most successful P2P-TV systems, namely PPLive, SopCast and TVAnts. Our goal is to assess what level of "network awareness" has been embedded in the applications, i.e., what parameters mainly drive the peer selection and data exchange. By using a general framework that can be extended to other systems and metrics, we show that all applications largely base their choices on the peer bandwidth, i.e., they prefer high-bandwidth users, which is rather intuitive. Moreover, TVAnts and PPLive exhibits also a preference to exchange data among peers in the same autonomous system the peer belongs to. However, no evidence about preference versus peers in the same subnet or that are closer to the considered peer emerges. We believe that next-generation P2P live streaming applications definitively need to improve the level of network-awareness, so to better localize the traffic in the network and thus increase their network-friendliness as wel
    corecore