2,046 research outputs found

    A scalable multi-core architecture with heterogeneous memory structures for Dynamic Neuromorphic Asynchronous Processors (DYNAPs)

    Full text link
    Neuromorphic computing systems comprise networks of neurons that use asynchronous events for both computation and communication. This type of representation offers several advantages in terms of bandwidth and power consumption in neuromorphic electronic systems. However, managing the traffic of asynchronous events in large scale systems is a daunting task, both in terms of circuit complexity and memory requirements. Here we present a novel routing methodology that employs both hierarchical and mesh routing strategies and combines heterogeneous memory structures for minimizing both memory requirements and latency, while maximizing programming flexibility to support a wide range of event-based neural network architectures, through parameter configuration. We validated the proposed scheme in a prototype multi-core neuromorphic processor chip that employs hybrid analog/digital circuits for emulating synapse and neuron dynamics together with asynchronous digital circuits for managing the address-event traffic. We present a theoretical analysis of the proposed connectivity scheme, describe the methods and circuits used to implement such scheme, and characterize the prototype chip. Finally, we demonstrate the use of the neuromorphic processor with a convolutional neural network for the real-time classification of visual symbols being flashed to a dynamic vision sensor (DVS) at high speed.Comment: 17 pages, 14 figure

    Platform for Testing and Evaluation of PUF and TRNG Implementations in FPGAs

    Get PDF
    Implementation of cryptographic primitives like Physical Unclonable Functions (PUFs) and True Random Number Generators (TRNGs) depends significantly on the underlying hardware. Common evaluation boards offered by FPGA vendors are not suitable for a fair benchmarking, since they have different vendor dependent configuration and contain noisy switching power supplies. The proposed hardware platform is primary aimed at testing and evaluation of cryptographic primitives across different FPGA and ASIC families. The modular platform consists of a motherboard and exchangeable daughter board modules. These are designed to be as simple as possible to allow cheap and independent evaluation of cryptographic blocks and namely PUFs. The motherboard is based on the Microsemi SmartFusion 2 SoC FPGA. It features a low-noise power supply, which simplifies evaluation of vulnerability to the side channel attacks. It provides also means of communication between the PC and the daughter module. Available software tools can be easily customized, for example to collect data from the random number generator located in the daughter module and to read it via USB interface. The daughter module can be plugged into the motherboard or connected using an HDMI cable to be placed inside a Faraday cage or a temperature control chamber. The whole platform was designed and optimized to fullfil the European HECTOR project (H2020) requirements

    A Scalable Correlator Architecture Based on Modular FPGA Hardware, Reuseable Gateware, and Data Packetization

    Full text link
    A new generation of radio telescopes is achieving unprecedented levels of sensitivity and resolution, as well as increased agility and field-of-view, by employing high-performance digital signal processing hardware to phase and correlate large numbers of antennas. The computational demands of these imaging systems scale in proportion to BMN^2, where B is the signal bandwidth, M is the number of independent beams, and N is the number of antennas. The specifications of many new arrays lead to demands in excess of tens of PetaOps per second. To meet this challenge, we have developed a general purpose correlator architecture using standard 10-Gbit Ethernet switches to pass data between flexible hardware modules containing Field Programmable Gate Array (FPGA) chips. These chips are programmed using open-source signal processing libraries we have developed to be flexible, scalable, and chip-independent. This work reduces the time and cost of implementing a wide range of signal processing systems, with correlators foremost among them,and facilitates upgrading to new generations of processing technology. We present several correlator deployments, including a 16-antenna, 200-MHz bandwidth, 4-bit, full Stokes parameter application deployed on the Precision Array for Probing the Epoch of Reionization.Comment: Accepted to Publications of the Astronomy Society of the Pacific. 31 pages. v2: corrected typo, v3: corrected Fig. 1

    SINGLE EVENT UPSET DETECTION IN FIELD PROGRAMMABLE GATE ARRAYS

    Get PDF
    The high-radiation environment in space can lead to anomalies in normal satellite operation. A major cause of concern to spacecraft-designers is the single event upset (SEU). SEUs can result in deviations from expected component behavior and are capable of causing irreversible damage to hardware. In particular, Field Programmable Gate Arrays (FPGAs) are known to be highly susceptible to SEUs. Radiation-hardened versions of such devices are associated with an increase in power consumption and cost in addition to being technologically inferior when compared to contemporary commercial-off-the-shelf (COTS) parts. This thesis consequently aims at exploring the option of using COTS FPGAs in satellite payloads. A framework is developed, allowing the SEU susceptibility of such a device to be studied. SEU testing is carried out in a software-simulated fault environment using a set of Java classes called JBits. A radiation detector module, to measure the radiation backdrop of the device, is also envisioned as part of the final design implementation

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Using embedded hardware monitor cores in critical computer systems

    Get PDF
    The integration of FPGA devices in many different architectures and services makes monitoring and real time detection of errors an important concern in FPGA system design. A monitor is a tool, or a set of tools, that facilitate analytic measurements in observing a given system. The goal of these observations is usually the performance analysis and optimisation, or the surveillance of the system. However, System-on-Chip (SoC) based designs leave few points to attach external tools such as logic analysers. Thus, an embedded error detection core that allows observation of critical system nodes (such as processor cores and buses) should enforce the operation of the FPGA-based system, in order to prevent system failures. The core should not interfere with system performance and must ensure timely detection of errors. This thesis is an investigation onto how a robust hardware-monitoring module can be efficiently integrated in a target PCI board (with FPGA-based application processing features) which is part of a critical computing system. [Continues.

    Multi-site European framework for real-time co-simulation of power systems

    Get PDF
    © The Institution of Engineering and Technology. The framework for virtual integration of laboratories enables co-simulation and joint experiments that include hardware and software resources hosted at geographically distributed laboratories. The underlying concept of such framework is geographically distributed real-time (RT) co-simulation. To this end, digital RT simulators are interfaced over long distances via shared communication network such as the Internet. This study proposes an architecture for a modular framework supporting virtual integration of laboratories that enable flexible integration of digital RT simulators across Europe. In addition, the framework includes an interface that enables access for third parties via a web browser. A co-simulation interface algorithm adopted in this study is based on representation of interface quantities in form of dynamic phasors. Time delay between RT digital simulators is compensated by means of phase shift that enables simulation fidelity for slow transients. The proposed architecture is realised for the integration of laboratories across Europe that are located at RWTH Aachen University in Germany, Politecnico di Torino in Italy and at European Commission Joint Research Centres in Petten, Netherland and in Ispra, Italy. The framework for virtual integration of laboratories presented in this study is applied for co-simulation of transmission and distribution systems

    A CASE STUDY OF VARIOUS WIRELESS NETWORK SIMULATION TOOLS

    Get PDF
    4G is the fastest developing system in the history of mobile communication networks. Network connectivity is paramount for all kinds of big enterprises.  4G not only provides super-fast connectivity to millions of users, but can also act as an enterprise network connectivity enabler and it has inherent advantages such as higher bandwidth, low latency, higher spectrum efficiency along with backward compatibility and future proofing. The design of the 4G based Long Term Evolution physical network provides the required flexibility for optimization during the development phase. In this paper LTE Network related supporting simulation tools is presented to demonstrate the need of Hardware co-simulation of the LTE system. After the feasibility analysis, the importance of the model is to be ported Field Programmable Gate Array platform is examined in survey in detail with the supporting inferences along with the comparison of different wireless network simulators suitable for LTE
    • …
    corecore