47 research outputs found

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    High speed protocols for dual bus and dual ring network architectures

    Get PDF
    In this dissertation, two channel access mechanisms providing fair and bandwidth efficient transmission on dual bus and dual ring networks with high bandwidth-latency product are proposed. In addition, two effective priority mechanisms are introduced to meet the throughput and delay requirements of the diverse arrays of applications that future high speed networks must support. For dual bus architectures, the Buffer Insertion Bandwidth Balancing (BI_BWB) mechanism and the Preemptive priority Bandwidth Balancing (P_BI_BWB) mechanism are proposed. BI_BWB can significantly improve the delay performance of remote stations. It achieves that by providing each station with a shift register into which the station can temporarily store the upstream stations\u27 transmitted packets and replace these packets with its own transmissions. P_BI_BWB, an enhancement of BI_BWB, is designed to introduce effective preemptive priorities. This mechanism eliminates the effect of low priority on high priority by buffering the low priority traffic into a shift register until the transmission of the high priority traffic is complete. For dual ring architectures, the Fair Bandwidth Allocation Mechanism (FBAM) and the Effective Priority Bandwidth Balancing (EP_BWB) mechanism are introduced. FBAM allows stations to reserve channel bandwidth on a continuous basis rather than wait until bandwidth starvation is observed. Consequently, FBAM does not have to deal with the difficult issue of identifying starvation, a serious drawback of other access mechanisms such as the Local and Global Fairness Algorithms (LFA and GFA, respectively). In addition, its operation requires a significantly smaller number of control bits in the access control field of the slot and its performance is less sensitive to system parameters. Moreover, FBAM demonstrates Max-Min flow control properties with respect to the allocation of bandwidth among competing traffic streams, which is a significant advantage of FBAM over all the previously proposed channel access mechanisms. EP_BWB, an enhancement of FBAM to support preemptive priorities, minimizes the effect of low priority on high priority and supports delay-sensitive traffic by enabling higher priority classes to preempt the transmissions of lower priority classes. Finally, the great potential of EP_BWB to support the interconnection of base stations on a distributed control wireless PCN carrying voice and data traffic is demonstrated

    Measurement-based Admission Control for Real-Time Traffic in IEEE 802.16 Wireless Metropolitan Area Network

    Get PDF
    To support real-time applications, we present a Measurement-based Admission Control (MBAC) scheme with Modified Largest Weighted Delay First (M-LWDF) scheduling algorithm. The objective of the admission control scheme is to admit new real-time application call into the system without jeopardizing the maximum average packet delay bound. Measured values of the average packet delay from the network are used for the admission decision. As long as a new call can obtain the requested service and the packet delay of existing calls are not risked by admitting it, the new call will be accepted into the network. In addition, M-LWDF scheduling algorithm is introduced to efficiently allocate network resource. Simulation results show that the proposed MBAC scheme maintains good packet delay bound

    Cellular radio networks systems engineering.

    Get PDF
    by Kwan Lawrence Yeung.Thesis (Ph.D.)--Chinese University of Hong Kong, 1995.Includes bibliographical references (leaves 115-[118]).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Cellular Concept --- p.1Chapter 1.2 --- Fixed Channel Assignment --- p.2Chapter 1.3 --- Dynamic Channel Assignment --- p.2Chapter 1.4 --- Performance Evaluation of DC A --- p.3Chapter 1.5 --- Han doff Analysis --- p.3Chapter 1.6 --- Mobile Location Tracking Strategies --- p.3Chapter 1.7 --- QOS Measure --- p.4Chapter 1.8 --- Organization of Thesis --- p.4Chapter 2 --- Optimization of Channel Assignment I --- p.6Chapter 2.1 --- Introduction --- p.6Chapter 2.2 --- Generating Compact Patterns --- p.7Chapter 2.2.1 --- Regular size cells --- p.7Chapter 2.2.2 --- Irregular size cells --- p.7Chapter 2.3 --- Nominal Channel Allocation Methods --- p.10Chapter 2.3.1 --- Compact pattern allocation --- p.10Chapter 2.3.2 --- Greedy allocation --- p.11Chapter 2.3.3 --- Hybrid allocation --- p.11Chapter 2.3.4 --- The K-Optimal variations --- p.11Chapter 2.3.5 --- Backtracking strategies --- p.12Chapter 2.4 --- Performance Comparison --- p.12Chapter 2.5 --- Conclusions --- p.16Chapter 3 --- Optimization of Channel Assignment II --- p.18Chapter 3.1 --- Introduction --- p.18Chapter 3.2 --- Basic Heuristics --- p.20Chapter 3.2.1 --- Two methods for cell ordering --- p.20Chapter 3.2.2 --- Two channel assignment strategies --- p.20Chapter 3.3 --- Channel Assignments with Cell Re-ordering --- p.21Chapter 3.3.1 --- Four channel assignment algorithms --- p.21Chapter 3.3.2 --- Complexity --- p.22Chapter 3.3.3 --- An example --- p.22Chapter 3.4 --- Channel Assignment at Hotspots --- p.23Chapter 3.4.1 --- Strategy F vs strategy R --- p.23Chapter 3.4.2 --- Strategy FR --- p.24Chapter 3.5 --- Numerical Examples --- p.25Chapter 3.5.1 --- "Performance of algorithms F/CR,F/DR,R/CR and R/DR" --- p.26Chapter 3.5.2 --- Effect of X & Y on performance of algorithms FR/CR & FR/DR --- p.26Chapter 3.5.3 --- Performance of algorithms FR/CR & FR/DR --- p.27Chapter 3.6 --- Conclusions --- p.27Chapter 4 --- Compact Pattern Based DCA --- p.29Chapter 4.1 --- Introduction --- p.29Chapter 4.2 --- Compact Pattern Channel Assignment --- p.30Chapter 4.2.1 --- Data structures --- p.30Chapter 4.2.2 --- Two functions --- p.31Chapter 4.2.3 --- Two phases --- p.32Chapter 4.3 --- Performance Evaluation --- p.33Chapter 4.4 --- Conclusions --- p.36Chapter 5 --- Cell Group Decoupling Analysis --- p.37Chapter 5.1 --- Introduction --- p.37Chapter 5.2 --- One-Dimensional Cell Layout --- p.38Chapter 5.2.1 --- Problem formulation --- p.38Chapter 5.2.2 --- Calculation of blocking probability --- p.39Chapter 5.3 --- Two-Dimensional Cell Layout --- p.41Chapter 5.3.1 --- Problem formulation --- p.41Chapter 5.3.2 --- Calculation of blocking probability --- p.42Chapter 5.4 --- Illustrative Examples --- p.42Chapter 5.4.1 --- One-dimensional case --- p.42Chapter 5.4.2 --- Two-dimensional case --- p.45Chapter 5.5 --- Conclusions --- p.45Chapter 6 --- Phantom Cell Analysis --- p.49Chapter 6.1 --- Introduction --- p.49Chapter 6.2 --- Problem Formulation --- p.49Chapter 6.3 --- Arrival Rates in Phantom Cells --- p.50Chapter 6.4 --- Blocking Probability and Channel Occupancy Distribution --- p.51Chapter 6.4.1 --- Derivation of α --- p.51Chapter 6.4.2 --- Derivation of Bside --- p.52Chapter 6.4.3 --- Derivation of Bopp --- p.53Chapter 6.4.4 --- Channel occupancy distribution --- p.54Chapter 6.5 --- Numerical Results --- p.55Chapter 6.6 --- Conclusions --- p.55Chapter 7 --- Performance Analysis of BDCL Strategy --- p.58Chapter 7.1 --- Introduction --- p.58Chapter 7.2 --- Borrowing with Directional Carrier Locking --- p.58Chapter 7.3 --- Cell Group Decoupling Analysis --- p.59Chapter 7.3.1 --- Linear cellular systems --- p.59Chapter 7.3.2 --- Planar cellular systems --- p.61Chapter 7.4 --- Phantom Cell Analysis --- p.61Chapter 7.4.1 --- Call arrival rates in phantom cells --- p.62Chapter 7.4.2 --- Analytical model --- p.62Chapter 7.5 --- Numerical Examples --- p.63Chapter 7.5.1 --- Linear cellular system with CGD analysis --- p.63Chapter 7.5.2 --- Planar cellular system with CGD analysis --- p.65Chapter 7.5.3 --- Planar cellular system with phantom cell analysis --- p.65Chapter 7.6 --- Conclusions --- p.68Chapter 8 --- Performance Analysis of Directed Retry --- p.69Chapter 8.1 --- Introduction --- p.69Chapter 8.2 --- Directed Retry Strategy --- p.69Chapter 8.3 --- Blocking Performance of Directed Retry --- p.70Chapter 8.3.1 --- Analytical model --- p.70Chapter 8.3.2 --- Numerical examples --- p.71Chapter 8.4 --- HandofF Analysis for Directed Retry --- p.73Chapter 8.4.1 --- Analytical model --- p.73Chapter 8.4.2 --- Numerical examples --- p.75Chapter 8.5 --- Conclusions --- p.77Chapter 9 --- Handoff Analysis in a Linear System --- p.79Chapter 9.1 --- Introduction --- p.79Chapter 9.2 --- Traffic Model --- p.80Chapter 9.2.1 --- Call arrival rates --- p.80Chapter 9.2.2 --- Channel holding time distribution --- p.81Chapter 9.3 --- Analytical Model --- p.81Chapter 9.3.1 --- Handoff probability --- p.81Chapter 9.3.2 --- Handoff call arrival rate --- p.81Chapter 9.3.3 --- Derivation of blocking probability --- p.81Chapter 9.3.4 --- Handoff failure probability --- p.82Chapter 9.3.5 --- Finding the optimal number of guard channels --- p.83Chapter 9.4 --- Numerical Results --- p.83Chapter 9.4.1 --- System parameters --- p.83Chapter 9.4.2 --- Justifying the analysis --- p.84Chapter 9.4.3 --- The effect of the number of guard channels --- p.84Chapter 9.5 --- Conclusions --- p.85Chapter 10 --- Mobile Location Tracking Strategy --- p.88Chapter 10.1 --- Introduction --- p.88Chapter 10.2 --- Review of Location Tracking Strategies --- p.89Chapter 10.2.1 --- Fixed location area strategy --- p.89Chapter 10.2.2 --- Fixed reporting center strategy --- p.89Chapter 10.2.3 --- Intelligent paging strategy --- p.89Chapter 10.2.4 --- Time-based location area strategy --- p.89Chapter 10.2.5 --- Movement-based location area strategy --- p.90Chapter 10.2.6 --- Distance-based location area strategy --- p.90Chapter 10.3 --- Optimization of Location Area Size --- p.90Chapter 10.3.1 --- Location updating rates ´ؤ linear systems --- p.90Chapter 10.3.2 --- Location updating rates ´ؤ planar systems --- p.91Chapter 10.3.3 --- Optimal location area size ´ؤ linear systems --- p.92Chapter 10.3.4 --- Optimal location area size ´ؤ planar systems --- p.92Chapter 10.4 --- Comparison of FLA & DBLA Strategies --- p.93Chapter 10.5 --- Adaptive Location Tracking Strategy --- p.94Chapter 10.5.1 --- Mobility tracking --- p.94Chapter 10.5.2 --- Protocols for ALT strategy --- p.94Chapter 10.6 --- Numerical Examples --- p.95Chapter 10.7 --- Conclusions --- p.97Chapter 11 --- A New Quality of Service Measure --- p.99Chapter 11.1 --- Introduction --- p.99Chapter 11.2 --- QOS Measures --- p.99Chapter 11.3 --- An Example --- p.101Chapter 11.4 --- Case Studies --- p.101Chapter 11.5 --- Conclusions --- p.106Chapter 12 --- Discussions & Conclusions --- p.107Chapter 12.1 --- Summary of Results --- p.107Chapter 12.2 --- Topics for Future Research --- p.108Chapter A --- Borrowing with Directional Channel Locking Strategy --- p.110Chapter B --- Derivation of p2 --- p.112Chapter C --- Publications Derived From This Thesis --- p.114Bibliography --- p.11

    LTE-3G Inter-Operability Study

    Get PDF
    In this thesis the author have studied and measured how LTE Release 8 interworks with previous legacy 3G networks in real environmental conditions. At present, LTE technology is deployed based on service hotspots that cover small geographical areas. It is expected that full scale deployment of LTE network will take a considerable time, which also means the mobile users have to primarily depend on legacy 3G and 2G networks for years to come. Therefore, it is important to study the interworking mechanisms between LTE and legacy networks in order to provide seamless mobility and uninterrupted user services in primarily available LTE hotspots. In order to perform this study, field measurements have been carried out in DNA commercial network in outdoor and indoor environments. Initially, cell selection and reselection criteria for inter-RAT mobility in idle condition is mathematically checked and verified. Then, channel conditions are studied and analyzed based on radio parameters like RSRP, RSCP, RSRQ, Ec/No, SNR and CQI when inter-RAT handover is performed. After that, an inter-RAT handover test from LTE towards 3G is studied with the help of signalling message. Next, the impact of inter-RAT handover on KPIs like MAC DL throughput, handover success rate, RTT, handover latency and user plane delay are studied and analyzed. Finally, performance of inter-RAT handover in outdoor and indoor measurement environment is compared based on KPI measurements. From this study, it is found that inter-RAT mobility from LTE towards 3G network is working in both idle and connected modes with 100 percent handover success rate, however, the user experienced network latency around 4 seconds in average. The user experienced degradation in throughput because of decreasing link quality. The user data service interruption is roughly for 3-4 seconds and the RTT value for 32 bytes of data is observed to be around 300 ms in average during handover. It is also found that the impact of inter-RAT handover in indoor environment is higher than outdoor environment based on KPIs results

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    A feasibility study of wireless network technologies for rural broadband connectivity

    Get PDF
    The adoption of wireless broadband technologies to provide network and Internet connectivity in rural communities has conveyed the possibility to overcome the challenges caused by marginalization and many other characteristics possessed by these rural communities. With their different capabilities, these technologies enable communication for rural communities internally within the community and externally on a global scale. Deployment of these technologies in rural areas requires consideration of different factors - these are in contrast, to those considered when deploying these technologies in non-rural, urban areas. Numerous research show consideration of facts for deployment of broadband technologies in urban/ non-rural environments and a little has been done in considering facts for deployment in rural environments. Hence this research aims to define guidelines for selection of broadband technologies and make recommendations on which technologies are suitable for deployment in rural communities, thereby considering facts that are true only within these rural communities. To achieve this, the research determines the metrics that are relevant and important to consider when deploying wireless broadband technology in rural communities of South Africa. It further undertakes a survey of wireless broadband technologies that are suitable for deployment in such areas. The study first profiles a list of wireless communication technologies, determines and documents characteristics of rural communities in Africa, determines metrics used to declare technologies feasible in rural areas. The metrics and rural characteristics are then used to identify technologies that are better suited than others. Informed by this initial profiling, one technology: mobile WiMAX is then selected for deployment and further evaluation. A technical review of mobile WiMAX is then carried out by deploying it at our research site in the rural, marginalized community of Dwesa (Eastern Cape, South Africa). The final section of this research provides recommendations that mobile WiMAX, LTE and Wi-Fi are the best suitable technologies for deployment in rural marginalized environments. This has been supported by extensive research and real life deployment of both Wi-Fi and mobile WiMAX. This research also recommends consideration of the following facts when seeking deployment of these technologies in rural communities: the geographical setting of the target terrain, the distances between sources and target customers and distances between target communities, weather conditions of the area, applications to be deployed over the network, social well-being of the community and their financial freedom as well
    corecore