26 research outputs found

    Caching on Named Data Network: a Survey and Future Research

    Get PDF
    The IP-based system cause inefficient content delivery process. This inefficiency was attempted to be solved with the Content Distribution Network. A replica server is located in a particular location, usually on the edge router that is closest to the user. The user’s request will be served from that replica server. However, caching on Content Distribution Network is inflexible. This system is difficult to support mobility and conditions of dynamic content demand from consumers. We need to shift the paradigm to content-centric. In Named Data Network, data can be placed on the content store on routersthat are closest to the consumer. Caching on Named Data Network must be able to store content dynamically. It should be selectively select content that is eligible to be stored or deleted from the content storage based on certain considerations, e.g. the popularity of content in the local area. This survey paper explains the development of caching techniques on Named Data Network that are classified into main points. The brief explanation of advantages and disadvantages are presented to make it easy to understand. Finally, proposed the open challenge related to the caching mechanism to improve NDN performance

    Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art and Challenges

    Get PDF
    International audienceInformation-Centric Networking (ICN) has been proposed as one of the future Internet architectures. It is poised to address the challenges faced by today's Internet that include, but not limited to, scalability, addressing, security, and privacy. Furthermore, it also aims at meeting the requirements for new emerging Internet applications. To realize ICN, Named Data Networking (NDN) is one of the recent implementations of ICN that provides a suitable communication approach due to its clean slate design and simple communication model. There are a plethora of applications realized through ICN in different domains where data is the focal point of communication. One such domain is Intelligent Transportation System (ITS) realized through Vehicular Ad hoc NETwork (VANET) where vehicles exchange information and content with each other and with the infrastructure. To date, excellent research results have been yielded in the VANET domain aiming at safe, reliable, and infotainment-rich driving experience. However, due to the dynamic topologies, host-centric model, and ephemeral nature of vehicular communication, various challenges are faced by VANET that hinder the realization of successful vehicular networks and adversely affect the data dissemination, content delivery, and user experiences. To fill these gaps, NDN has been extensively used as underlying communication paradigm for VANET. Inspired by the extensive research results in NDN-based VANET, in this paper, we provide a detailed and systematic review of NDN-driven VANET. More precisely, we investigate the role of NDN in VANET and discuss the feasibility of NDN architecture in VANET environment. Subsequently, we cover in detail, NDN-based naming, routing and forwarding, caching, mobility, and security mechanism for VANET. Furthermore, we discuss the existing standards, solutions, and simulation tools used in NDN-based VANET. Finally, we also identify open challenges and issues faced by NDN-driven VANET and highlight future research directions that should be addressed by the research community

    An efficient pending interest table control management in named data network

    Get PDF
    Named Data Networking (NDN) is an emerging Internet architecture that employs a new network communication model based on the identity of Internet content. Its core component, the Pending Interest Table (PIT) serves a significant role of recording Interest packet information which is ready to be sent but in waiting for matching Data packet. In managing PIT, the issue of flow PIT sizing has been very challenging due to massive use of long Interest lifetime particularly when there is no flexible replacement policy, hence affecting PIT performance. The aim of this study is to propose an efficient PIT Control Management (PITCM) approach to be used in handling incoming Interest packets in order to mitigate PIT overflow thus enhancing PIT utilization and performance. PITCM consists of Adaptive Virtual PIT (AVPIT) mechanism, Smart Threshold Interest Lifetime (STIL) mechanism and Highest Lifetime Least Request (HLLR) policy. The AVPIT is responsible for obtaining early PIT overflow prediction and reaction. STIL is meant for adjusting lifetime value for incoming Interest packet while HLLR is utilized for managing PIT entries in efficient manner. A specific research methodology is followed to ensure that the work is rigorous in achieving the aim of the study. The network simulation tool is used to design and evaluate PITCM. The results of study show that PITCM outperforms the performance of standard NDN PIT with 45% higher Interest satisfaction rate, 78% less Interest retransmission rate and 65% less Interest drop rate. In addition, Interest satisfaction delay and PIT length is reduced significantly to 33% and 46%, respectively. The contribution of this study is important for Interest packet management in NDN routing and forwarding systems. The AVPIT and STIL mechanisms as well as the HLLR policy can be used in monitoring, controlling and managing the PIT contents for Internet architecture of the future

    Raspberry Pi Technology

    Get PDF

    Methodological proposals for the development of services in a smart city: A literature review

    Get PDF
    Indexación ScopusThis literature review analyzes and classifies methodological contributions that answer the different challenges faced by smart cities. This study identifies city services that require the use of artificial intelligence (AI); which they refer to as areas of application of A. These areas are classified and evaluated, taking into account the five proposed domains (government, environment, urban settlements, social assistance, and economy). In this review, 168 relevant studies were identified that make methodological contributions to the development of smart cities and 66 areas of application of AI, along with the main challenges associated with their implementation. The review methodology was content analysis of scientific literature published between 2013 and 2020. The basic terminology of this study corresponds to AI, the internet of things, and smart cities. In total, 196 references were used. Finally, the methodologies that propose optimization frameworks and analytical frameworks, the type of conceptual research, the literature published in 2018, the urban settlement macro-categories, and the group city monitoring–smart electric grid, make the greater contributions. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.https://www.mdpi.com/2071-1050/12/24/1024

    Application-Aware Network Design Using Software Defined Networking for Application Performance Optimization for Big Data and Video Streaming

    Get PDF
    Title from PDF of title page viewed October 30, 2017Dissertation advisor: Deep MedhiVitaIncludes bibliographical references (pages 122-135)Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2017This dissertation investigates improvement in application performance. For applications, we consider two classes: Hadoop MapReduce and video streaming. The Hadoop MapReduce (M/R) framework has become the de facto standard for Big Data analytics. However, the lack of network-awareness of the default MapReduce resource manager in a traditional IP network can cause unbalanced job scheduling and network bottlenecks; such factors can eventually lead to an increase in the Hadoop MapReduce job completion time. Dynamic Video streaming over the HTTP (MPEG-DASH) is becoming the defacto dominating transport for today’s video applications. It has been implemented in today’s major media carriers such as Youtube and Netflix. It enables new video applications to fully utilize the existing physical IP network infrastructure. For new 3D immersive medias such as Virtual Reality and 360-degree videos are drawing great attentions from both consumers and researchers in recent years. One of the biggest challenges in streaming such 3D media is the high band width demands and video quality. A new Tile-based video is introduced in both video codec and streaming layer to reduce the transferred media size. In this dissertation, we propose a Software-Defined Network (SDN) approach in an Application-Aware Network (AAN) platform. We first present an architecture for our approach and then show how this architecture can be applied to two aforementioned application areas. Our approach provides both underlying network functions and application level forwarding logics for Hadoop MapReduce and video streaming. By incorporating a comprehensive view of the network, the SDN controller can optimize MapReduce work loads and DASH flows for videos by application-aware traffic reroute. We quantify the improvement for both Hadoop and MPEG-DASH in terms of job completion time and user’s quality of experience (QoE), respectively. Based on our experiments, we observed that our AAN platform for Hadoop MapReduce job optimization offer a significant improvement compared to a static, traditional IP network environment by reducing job run time by 16% to 300% for various MapReduce benchmark jobs. As for MPEG-DASH based video streaming, we can increase user perceived video bitrate by 100%.Introduction -- Research survey -- Proposed architecture -- AAN-SDN for Hadoop -- Study of User QoE Improvement for Dynamic Adaptive Streaming over HTTP (MPEG-DASH) -- AAN-SDN For MPEG-DASH -- Conclusion -- Appendix A. Mininet Topology Source Code For DASH Setup -- Appendix B. Hadoop Installation Source Code -- Appendix C. Openvswitch Installation Source Code -- Appendix D. HiBench Installation Guid

    Energy-efficient Transitional Near-* Computing

    Get PDF
    Studies have shown that communication networks, devices accessing the Internet, and data centers account for 4.6% of the worldwide electricity consumption. Although data centers, core network equipment, and mobile devices are getting more energy-efficient, the amount of data that is being processed, transferred, and stored is vastly increasing. Recent computer paradigms, such as fog and edge computing, try to improve this situation by processing data near the user, the network, the devices, and the data itself. In this thesis, these trends are summarized under the new term near-* or near-everything computing. Furthermore, a novel paradigm designed to increase the energy efficiency of near-* computing is proposed: transitional computing. It transfers multi-mechanism transitions, a recently developed paradigm for a highly adaptable future Internet, from the field of communication systems to computing systems. Moreover, three types of novel transitions are introduced to achieve gains in energy efficiency in near-* environments, spanning from private Infrastructure-as-a-Service (IaaS) clouds, Software-defined Wireless Networks (SDWNs) at the edge of the network, Disruption-Tolerant Information-Centric Networks (DTN-ICNs) involving mobile devices, sensors, edge devices as well as programmable components on a mobile System-on-a-Chip (SoC). Finally, the novel idea of transitional near-* computing for emergency response applications is presented to assist rescuers and affected persons during an emergency event or a disaster, although connections to cloud services and social networks might be disturbed by network outages, and network bandwidth and battery power of mobile devices might be limited

    Load balancing and context aware enhancements for RPL routed Internet of Things.

    Get PDF
    Internet of Things (IoT) has been paving the way for a plethora of potential applications, which becomes more spatial and demanding. The goal of this work is to optimise the performance within the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) in the network layer.RPL still suffers from unbalanced load traffic among the candidate parents. Consequently, the overloaded parent node drains its energy much faster than other candidate parent nodes. This may lead to an early disconnection of a part of the network topology and affect the overall network reliability. To solve this problem, a new objective function (OF) has been proposed to usher better load balancing among the bottleneck candidate parents, and keep the overloaded nodes lifetime thriving to longer survival.Moreover, several IoT applications have antagonistic requirements but pertinent, which results in a greater risk of affecting the network reliability, especially within the emergency scenarios. With the presence of this challenging issue, the current standardised RPL OFs cannot sufficiently fulfil the antagonistic needs of Low-power and Lossy Networks (LLNs) applications. In response to the above issues, a context adaptive OF has been proposed to facilitate exchanging the synergy information between the application and network layers. Thus, the impact of the antagonistic requirements based on context parameters will be mitigated via rationalizing the selection decision of the routing path towards the root node.We implemented the proposed protocol and verified all our findings through excessive measurements via simulations and a realistic deployment using a real testbed of a multi-hop LLNs motes. The results proved the superiority of our solution over the existing ones with respect to end-to-end delay, packet delivery ratio and network lifetime. Our contribution has been accepted initially to be adopted within the standard body Internet Engineering Task Force (IETF)
    corecore