406 research outputs found

    Wireless Technologies for IoT in Smart Cities

    Full text link
    [EN] As cities continue to grow, numerous initiatives for Smart Cities are being conducted. The concept of Smart City encompasses several concepts being governance, economy, management, infrastructure, technology and people. This means that a Smart City can have different communication needs. Wireless technologies such as WiFi, ZigBee, Bluetooth, WiMax, 4G or LTE (Long Term Evolution) have presented themselves as solutions to the communication needs of Smart City initiatives. However, as most of them employ unlicensed bands, interference and coexistence problems are increasing. In this paper, the wireless technologies available nowadays for IoT (Internet of Things) in Smart Cities are presented. Our contribution is a review of wireless technologies, their comparison and the problems that difficult coexistence among them. In order to do so, the characteristics and adequacy of wireless technologies to each domain are considered. The problems derived of over-crowded unlicensed spectrum and coexistence difficulties among each technology are discussed as well. Finally, power consumption concerns are addressed.García-García, L.; Jimenez, JM.; Abdullah, MTA.; Lloret, J. (2018). Wireless Technologies for IoT in Smart Cities. Network Protocols and Algorithms. 10(1):23-64. doi:10.5296/npa.v10i1.12798S236410

    A Method for Dynamically Selecting the Best Frequency Hopping Technique in Industrial Wireless Sensor Network Applications

    Get PDF
    Industrial wireless applications often share the communication channel with other wireless technologies and communication protocols. This coexistence produces interferences and transmission errors which require appropriate mechanisms to manage retransmissions. Nevertheless, these mechanisms increase the network latency and overhead due to the retransmissions. Thus, the loss of data packets and the measures to handle them produce an undesirable drop in the QoS and hinder the overall robustness and energy efficiency of the network. Interference avoidance mechanisms, such as frequency hopping techniques, reduce the need for retransmissions due to interferences but they are often tailored to specific scenarios and are not easily adapted to other use cases. On the other hand, the total absence of interference avoidance mechanisms introduces a security risk because the communication channel may be intentionally attacked and interfered with to hinder or totally block it. In this paper we propose a method for supporting the design of communication solutions under dynamic channel interference conditions and we implement dynamic management policies for frequency hopping technique and channel selection at runtime. The method considers several standard frequency hopping techniques and quality metrics, and the quality and status of the available frequency channels to propose the best combined solution to minimize the side effects of interferences. A simulation tool has been developed and used in this work to validate the method.Research partially supported by the European Union's Seventh Framework Programme for research, technological development and demonstration under Grant Agreement Number FP7-SEC-2013-1/607292 ZONeSEC-Towards a EU framework for the security of Widezones, in the scope of the activities related to develop technologies that foster the Plug, Play&Forget paradigm. Also partially supported by the Department of Education, Universities and Research of the Basque Government under Grant IT980-16 and the Spanish Research Council, under grant TIN2016-79897-P

    Wireless Sensor Networks: VAN-Project Perspectives

    Get PDF
    The emergence of wireless sensor networks and their potential for a multitude of novel applications, especially in the industrial automation domain, are noteworthy. This paper presents research and development perspectives on wireless sensor networks from the Virtual Automation Networks project in terms of prototype development and coexistence with other chosen wireless technologies. The project-specific design and specification aspects, implementation and integration issues, and coexistence tests, measurements and results are covered in detail. The paper illustrates the successful integration of wireless sensor networks into the overall prototype and shows that they can coexist with other wireless technologies

    SNR-based evaluation of coexistence in wireless system of hospital

    Get PDF
    Abstract. The wireless system (IEEE Std. 802.11) of North Karelian Central Hospital (NKCH) has been studied in the newly opened J2 building of the hospital. The measurements have been carried out using Ekahau Sidekick spectrum analyser and Ekahau Pro software. Signal propagation has been modelled in the control ward of the Emergency department because many coexisting systems are used with critical requirements of data communication over there. The analytical models have been developed to understand the radio-frequency (RF) signal propagation in the entire building. Measurements have also been carried out on the entire first floor, in the Department of the Abdominal Diseases on the ground floor and in the Children’s wards on the third floor. The multi-slope path-loss propagation models with shadowing have been generated based on the Received Signal Strength Indicator (RSSI) measurements for typical hospital environment at the 2.4 GHz and 5 GHz Industrial, Scientific, and Medical (ISM) band. The measurements have been carried out within the two predefined routes. The models have also been compared to the empirically derived path-loss models. The probability of signal outage has been calculated for both measured routes. The aggregate interference has been measured within the routes that cover the area where remarkable signal variations and the high level of interference has been indicated based on the heatmaps of Ekahau. The use of Ekahau Sidekick and Ekahau Pro software in the coexistence study has been described. The noise floor has been determined based on the averaged values of the six measurement campaigns. The local changes in signal strength of the desired signal and aggregated power of interference have been studied. The Signal-to-Interference Ratio (SIR) models have been generated within the measured routes. The rapid decreases of Signal-to-Noise Ratio (SNR) have been indicated on all measured floors of building J2. They have been studied and their effect on the network performance has been evaluated. The evaluation has been done by comparing the measured values of RSSI, SNR and SIR to the requirements of the respective Modulation and Coding Scheme (MCS). The link margins have been calculated based on the chosen bit error probability and the given SNR requirement of the respective MCS. The comparison between the measured RSSI readings and the required threshold of the respective MCS has been done using the defined shadowing as a link margin. It has been shown that the measured difference between the signal strength of the 2.4 GHz and 5 GHz bands has been caused by the reduced transmit power at the 2.4 GHz band. Based on the SIR measurements, it has been shown that the access points of the neighbouring building have contributed locally to the measured aggregate interference in the Control ward. However, the primary reason for the decrease of SIR at the 2.4 GHz band has been the decrease of desired signal power that has been contributed by the above mentioned reduced transmit power. The strong SNR drops have been indicated on every measured floor before the roaming has occurred.Sairaalan langattoman järjestelmän arviointi signaali-kohina-suhteen avulla. Tiivistelmä. Tässä diplomityössä on tutkittu Pohjois-Karjalan keskussairaalan (PKKS) langatonta verkkoa (IEEE Std. 802.11) äskettäin avatussa sairaalan laajennusosassa (J2-rakennus). Mittaukset on toteutettu käyttäen Ekahau Sidekick spektrianalysaattoria ja Ekahau Pro -ohjelmaa. Päivystyksen valvontaosasto on valittu tutkimuskohteeksi, koska siellä käytetään paljon eri teknologioihin perustuvia järjestelmiä, joiden välinen tiedonsiirto on luonteeltaan kriittistä. Luotujen mallien avulla rakennuksen langatonta toimintaympäristöä tutkitaan RF-järjestelmän (Radio-Frequency) näkökulmasta myös muissa mittausten kohteina olleissa tiloissa. Mittauksia on tehty myös valvontaosaston ulkopuolella 1. kerroksessa sekä 3. kerroksen lastenosastoilla ja Vatsakeskuksen tiloissa pohjakerroksessa. RSSI-mittausten perusteella on luotu radiotiehäviöihin perustuvat etenemismallit molemmilla käytössä olevilla ISM-taajuuskaistoilla (Industrial, Scientific and Medical bands). Varjostuminen ja etenemishäviökertoimen muutokset on otettu huomioon etenemismalleissa. Mittaukset on suoritettu ennalta määritellyillä reiteillä. Luotuja malleja on verrattu myös tutkimuskirjallisuudessa esitettyihin, empiirisesti johdettuihin etenemishäviömalleihin. Signaalikatkoksen todennäköisyys on laskettu molemmille reiteille 2.4 GHz:n taajuuskaistalla. Vastaanotetun häiriötehon summa on mitattu koko mallinnettavan tilan alueelle ulottuvien mittausreittien pohjalta. Mittausreitit on määritelty Ekahau Pron tuottamien kuuluvuus- ja häiriökarttojen avulla ottaen huomioon havaitut signaalitason vaihtelut. Ekahau Sidekick -spektrianalysaattorin ja Ekahau Pro -ohjelman käyttöä on kuvattu tämän tutkimuksen kontekstissa. Kohinataso on määritelty kaikissa kuudessa mittauskampanjassa mitattujen kohina-tehoarvojen keskiarvona. Paikallisten hyötysignaalinvoimakkuus- ja häiriötehovaihteluiden vaikutusta verkon suorituskykyyn on tutkittu ja molemmat mittausreitit kattavat SIR-mallit (Signal-to-Interference Ratio) on luotu. Kaikissa tutkituissa kerroksissa havaittuja äkillisiä signaali-kohinasuhteen vaihteluita on tutkittu ja niiden vaikutusta järjestelmän suorituskykyyn on arvioitu. Mitattujen hyöty- ja häiriösignaalivaihteluiden arviointi on toteutettu vertaamalla mittaamalla saatuja SNR- (Signal-to-Noise ratio), SIR- ja RSSI-arvoja (Received Signal Strength Indicator) eri tiedonsiirtonopeuksia käyttävien MCS-indeksien vaatimiin signaalinvoimakkuus- ja signaali-kohina-suhteen arvoihin. Kynnysarvoille on laskettu linkkimarginaalit käyttäen mitoitusvaatimuksena valittua bittivirhetodennäköisyyden arvoa. Mitattuja RSSI-arvoja on verrattu käyttäen linkkimarginaalina etenemismallinnuksessa määritettyjä varjostumisvaikutuksen arvoja. 2.4 ja 5 GHz:n taajuusalueiden välillä mitatun signaalinvoimakkuuseron on tutkimuksessa saatujen tulosten perusteella osoitettu olevan seurausta alennetusta lähetystehosta 2.4 GHz:n kaistalla. SIR-mittausten perusteella on todettu viereisen rakennuksen tukiasemien kasvattaneen vastaanotettua häiriötehosummaa valvontaosastolla paikallisesti. Ensisijainen syy mitattuihin SIR-arvojen vaihteluihin ovat kuitenkin alhainen signaalinvoimakkuus 2.4 GHz:n kaistalla, mikä osittain johtuu edellä kuvatusta alennetusta lähetystehosta. Voimakkaita SNR-vaihteluita on mitattu kaikissa kerroksissa ennen kuin päätelaite kytkeytyy uuteen tukiasemaan

    Wireless networks in industrial environments: state of the art and issues

    Get PDF
    Wireless is everywhere nowadays and WLAN (i.e. 802.11 standard family) has became used by almost any communications devices in the mass market. The recent achievements in the fields of modulation techniques, such as Spread Spectrum, coding methods, such as Turbocodes, CDMA2000, and frequencies allocation methods, such as OFDM and Frequency Hopping, has pushed the growing uses of reliable and low-cost wireless technologies. Among them the last standards are: IEEE 802.11 family (i.e. WiFi), HyperLAN and HyperLAN2, IEEE 802.15 (i.e. WPAN), IEEE 802.16 (i.e. WiMAX)… However, the industrial environments are not taken into consideration in the design of those standards, because its harsh constraints has specific characteristics (reliability, interferences with existing equipments, multi-path propagation, low-power consumption, real-time reconfiguration, security…) that need specific requirements and eventually standards. This paper will intent to give an overview of the wireless technologies and discusses the current and future possible technologies for the uses in the industrial environments (power plants and stations, factories, industrial buildings, automotive…). Our current works showed us that there is no perfect technology by it-self but the best trade-off solution is a hybrid architecture combining the right wired and wireless technologies.1st IFIP International Conference on Ad-Hoc NetWorkingRed de Universidades con Carreras en Informática (RedUNCI

    The design and evaluation of Wireless Sensor Networks for applications in industrial locations

    Get PDF
    In manufacturing industries, there exist many applications where Wireless Sensor Networks (WSN\u27s) are integrated to provide wireless solution for the automated manufacturing processes. It is well known that industrial environments characterized by extreme conditions such as high temperature, pressure, and electromagnetic (EM) interference that can affect the performance of the WSN\u27s. The key solution to overcome this performance issue is by monitoring the received Signal Strength Index (RSSI) at the received sensor of the WSN device and track frame error rate of wireless packets. ZigBee is a wireless sensor network (WSN) standard designed for specific needs of the remote monitoring sensor system. Zigbee networks can be established by three different topologies: start, hybrid, and mesh. In this research project, the interest in analyzing the characteristics of the Zigbee performance was completed using a star topology network. Three performance parameters were obtained: the RSSI signal to monitor the received wireless packets from the sending node, path-lost exponent to determine the effect of industrial environment on wireless signals, and the frame error rate to know the discontinue time. The study was in three phases and took place in two settings: The first was at the manufacturing laboratory at the University of Northern Iowa, the second and the third were at the facility of a Midwestern manufacturing company. The study aimed to provide an analytical tool to evaluate the performances of Zigbee networks in industrial environments and compare the results to show that harsh environments do affect its performance. The study also involved testing the performance of WSN. This was done by simulating input/output Line passing with digital and analog data. Packets were sent from one node and counted at the receiving side to measure the packet error rate of WSN in industrial environment. In conclusion, investigating the WSN\u27s systems performance in industrial environment provides is crucial to identify the effects of the harsh conditions. It is necessary to run similar investigation to prevent the malfunction of the manufacturing applications. Testing a simple WSN in industrial environment can be capable of predicting the performance of the network. It is also recommended to have an embedded approach to WSN applications that can self-monitor its performance

    Investigation of Wireless LAN for IEC 61850 based Smart Distribution Substations

    Get PDF
    The IEC 61850 standard is receiving acceptance worldwide to deploy Ethernet Local Area Networks (LANs) for electrical substations in a smart grid environment. With the recent growth in wireless communication technologies, wireless Ethernet or Wireless LAN (WLAN), standardized in IEEE 802.11, is gaining interest in the power industry for substation automation applications, especially at the distribution level. Low Voltage (LV) / Medium Voltage (MV) distribution substations have comparatively low time-critical performance requirements. At the same time, expensive but high data-rate fiber-based Ethernet networks may not be a feasible solution for the MV/LV distribution network. Extensive work is carried out to assess wireless LAN technologies for various IEC 61850 based smart distribution substation applications: control and monitoring; automation and metering; and over-current protection. First, the investigation of wireless LANs for various smart distribution substation applications was initiated with radio noise-level measurements in total five (27.6 and 13.8 kV) substations owned by London Hydro and Hydro One in London, ON, Canada. The measured noise level from a spectrum analyzer was modeled using the Probability Distribution Function (PDF) tool in MATLAB, and parameters for these models in the 2.4 GHz band and 5.8 GHz band were obtained. Further, this measured noise models were used to simulate substation environment in OPNET (the industry-trusted communication networking simulation) tool. In addition, the efforts for developing dynamic models of WLAN-enabled IEC 61850 devices were initiated using Proto-C programming in OPNET tool. The IEC 61850 based devices, such as Protection and Control (P&C) Intelligent Electronic Devices (IEDs) and Merging Unit (MU) were developed based on the OSI-7 layer stack proposed in IEC 61850. The performance of various smart distribution substation applications was assessed in terms of average and maximum message transfer delays and throughput. The work was extended by developing hardware prototypes of WLAN enabled IEC 61850 devices in the R&D laboratory at University of Western Ontario, Canada. P&C IED, MU, Processing IED, and Echo IED were developed using industrial embedded computers over the QNX Real Time Operating System (RTOS) platform. The functions were developed using hard real-time multithreads, timers, and so on to communicate IEC 61850 application messages for analyzing WLAN performance in terms of Round Trip Time (RTT) and throughput. The laboratory was set up with WLAN-enabled IEC 61850 devices, a commercially available WLAN Access Point (AP), noise sources, and spectrum and network analyzers. Performance of various smart distribution substation applications is examined within the developed laboratory. Finally, the performance evaluation was carried out in real-world field testing at 13.8 and 27.6 kV distribution substations, by installing the devices in substation control room and switchyard. The RTT of IEC 61850 based messages and operating time of the overcurrent protection using WLAN based communication network were evaluated in the harsh environment of actual distribution substations. The important findings from the exhaustive investigation were discussed throughout this work

    Soft real-time communications over Bluetooth under interferences from ISM devices

    Get PDF
    Bluetooth is a suitable technology to support soft real-time applications like multimedia streams at the personal area network level. In this paper, we analytically evaluate the worst-case deadline failure probability of Bluetooth packets under co-channel interference as a way to provide statistical guarantees when transmitting soft real-time traffic using ACL links. We consider the interference from independent Bluetooth devices, as well as from other devices operating in the ISM band like 802.11b/g and Zigbee. Finally, we show as an example how to use our model to obtain some results for the transmission of a voice stream.Ministerio de Ciencia y Tecnología TIC2001-1868-C03-0
    corecore