15,181 research outputs found

    The Youth Correction Authority Act

    Get PDF
    Since wireless communication has become a standard feature in the daily life, smartphones and tablets among other things are integrated with the Bluetooth technology. While in some parts of the day wireless communication can be used for searching the internet and share information on social networks without the need of having a secure connection, there are some other parts where the security might become of high importance. When the technology gets integrated in companies the security problem becomes more evident. This is because when the radio signals spread in the medium they can be accessed by anyone that is in reach in the network and the information that was sent may not be intended for everyone. To secure the network from unintended users becomes important when handling fragile information, which companies may deal with daily.  This paper gives an introduction on which security features and techniques that already exist in some personal area networks. From this it has been clear that a security feature could be implemented on the baseband layer of Bluetooth to increase the secrecy during the transmission since at the moment security is only implemented on higher layers using encryption algorithms.  This paper proposes a conceptual idea of improving the secrecy in the network by using a wiretap code that is implemented before the error-correction coding in the Bluetooth's baseband. By disabling the ARQ scheme in Bluetooth one can modulate the channel as a Packet Erasure Channel that will lose packet with a certain probability. By using a nested code structure, the message can then be securely sent by using a higher rate than what the eavesdropper can recover due to the amount of errors the received signal will have. The performance of the concept is evaluated with the secrecy throughput, secrecy outage and the leakage

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Safetynet version 2, a packet error recovery architecture for vertical handoffs

    Get PDF
    Mobile devices are connecting to the Internet through an increasingly heterogeneous network environment. This connectivity via multiple types of wireless networks allows the mobile devices to take advantage of the high speed and the low cost of wireless local area networks and the large coverage of wireless wide area networks. To maximize the benefits from these complementing characteristics, the mobile devices need to be able to switch seamlessly between the different network types. However, the switch between the technologies, also known as a vertical handoff, often results in significant packet loss and degradation of connectivity due to handoff delay and also increased packet loss rate on the border of the coverage area of the networks. In our previous work, we have proposed an inter technology mobility management architecture which addresses the packet losses using selective resending of packets lost during the handoff period. In this paper, we extend the architecture to address packet losses due to wireless errors more efficiently by taking advantage of erasure codes to form redundancy packets. We propose to send these redundancy packets over both links. We show that this proposal reduces both the chances of packet loss and the buffering requirements of the original Safetynet scheme

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service

    Energy-efficient adaptive wireless network design

    Get PDF
    Energy efficiency is an important issue for mobile computers since they must rely on their batteries. We present an energy-efficient highly adaptive architecture of a network interface and novel data link layer protocol for wireless networks that provides quality of service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations are necessary to achieve energy efficiency and an acceptable quality of service. The paper provides a review of ideas and techniques relevant to the design of an energy efficient adaptive wireless networ
    • …
    corecore