830 research outputs found

    Fuzzy based load and energy aware multipath routing for mobile ad hoc networks

    Get PDF
    Routing is a challenging task in Mobile Ad hoc Networks (MANET) due to their dynamic topology and lack of central administration. As a consequence of un-predictable topology changes of such networks, routing protocols employed need to accurately capture the delay, load, available bandwidth and residual node energy at various locations of the network for effective energy and load balancing. This paper presents a fuzzy logic based scheme that ensures delay, load and energy aware routing to avoid congestion and minimise end-to-end delay in MANETs. In the proposed approach, forwarding delay, average load, available bandwidth and residual battery energy at a mobile node are given as inputs to a fuzzy inference engine to determine the traffic distribution possibility from that node based on the given fuzzy rules. Based on the output from the fuzzy system, traffic is distributed over fail-safe multiple routes to reduce the load at a congested node. Through simulation results, we show that our approach reduces end-to-end delay, packet drop and average energy consumption and increases packet delivery ratio for constant bit rate (CBR) traffic when compared with the popular Ad hoc On-demand Multipath Distance Vector (AOMDV) routing protocol

    Light Load Path Selection Techniques for Control Congestion in MANET (ENBA)

    Get PDF
    The nodes have limited bandwidth and processing capability. The routing protocols cannot handle the congestion due to heavy load in mobile ad hoc networks. Several routes are established in the network, and some intermediate nodes are common. The dynamic behaviour of the network creates problems for strong link establishment. The routing protocol establishes the connection between the sender and receiver. The efficient routing approach uses the concept of load balancing to reduce packet loss in a network. The heavy load on the network affects the node’s buffer capacity and link capacity. The research proposed the Effective Network Behavior Analyze (ENBA) for route sections to control congestion in MANET. This paper’s effort is driven by the idea of considering several aspects of the routing design of Mobile Ad hoc Networks (MANETs) in a unified manner. ENBA is a routing strategy that uses the shortest path for routing and balances the load by managing incoming and outgoing packets on links and nodes. In this routing scheme, the shortest path measures the buffer capacity of the nodes with higher TTL values selected for sending the data packets in the network. The link capacity is based on the flow of packets in the network. Queue optimisation is a continuous optimisation in which we count the number of packets incoming and decide the link reliability in a dynamic network. The performance of ENBA is compared with the Ad hoc On-demand Multipath Distance Vector -Modified (AOMDV-M) routing protocol. The ENDA strategy outperforms the competition in terms of performance over a shorter period. In the proposed technique, performance matrices like PDR, overhead, and delay provide better results than the previous AOMDV-M routing approach

    Improving routing performance of multipath ad hoc on-demand distance vector in mobile add hoc networks.

    Get PDF
    The aim of this research is to improve routing fault tolerance in Mobile Ad hoc Networks (MANETs) by optimising mUltipath routing in a well-studied reactive and single path routing protocol known as Ad hoc On-demand Distance Vector (AODV). The research also aims to prove the effect of varying waiting time of Route Reply (RREP) procedure and utilising the concept of efficient routes on the performance of multipath extensions to AODV. Two novel multipath routing approaches are developed in this thesis as new extensions to AODV to optimise routing overhead by improving Route Discovery Process (RDP) and Route Maintenance Process (RMP) of multipath AODV. The first approach is a Iinkdisjoint multipath extension called 'Thresho)d efficient Routes in multipath AODV' (TRAODV) that optimises routing packets ~verhead by improving the RDP of AODV which is achieved by detecting the waiting time required for RREP procedure to receive a threshold number of efficient routes. The second approach is also a link-disjoint mUltipath extension called 'On-demand Route maintenance in Multipath AoDv' (ORMAD) which is an extension to TRAODV that optimises routing packets and delay overhead by improving the RMP of TRAODV. ORMAD applies the concepts of threshold waiting time and efficient routes to both phases RDP and RMP. It also applies RMP only to efficient routes which are selected in the RDP and when a route fails, it invokes a local repair procedure between upstream and downstream nodes of the broken link. This mechanism produces a set of alternative subroutes with less number of hops which enhances route efficiency and consequently minimises the routing overhead. TRAODV and ORMAD are implemented and evaluated against two existing multipath extensions to,AODV protocol and two traditional multipath protocols. The existing extensions to AODV used in the evaluation are a well-known protocol called Ad hoc On-demand Multipath Distance Vector (AOMDV) and a recent extension called Multiple Route AODV (MRAODV) protocol which is extended in this thesis to the new approach TRAODV while the traditional multipath protocols used in the evaluation are Dynamic Source Routing (DSR) and Temporally Ordered Routing Algorithm (TORA). Protocols are implemented using NS2 and evaluated under the same simulation environment in terms of four performance metrics; packet delivery fraction, average end-to-end delay, routing packets overhead, and throughput. Simulation results of TRAODV evaluation show that the average number of routes stored in a routing table of MRAODV protocol is always larger than the average number of routes in TRAODV. Simulation results show that TRAODV reduces the overall routing packets overhead compared to both extensions AOMDV and MRAODV, especially for large network size and high mobility. A vital drawback of TRAODV is that its performance is reduced compared to AOMDV and MRAODV in terms of average end-to-end delay. Additionally, TORA still outperforms TRAODV and the other extensions to AODV in terms of routing packets overhead. In order to overcome the drawbacks of TRAODV, ORMAD is developed by improving the RDP of TRAODV. The performance of ORMAD is evaluated against RREP waiting time using the idea of utilising the efficient routes in both phases RDP and RMP. Simulation results of ORMAD show that the performance is affected by varying the two RREP waiting times of both RDP and RMP in different scenarios. As shown by the simulation results, applying the short and long waiting times in both phases tends to less performance in terms of routing packets overhead while applying the moderate waiting times tends to better performance. ORMAD enhances routing packets overhead and the average end-to-end delay compared to TRAODV, especially in high mobility scenarios. ORMAD has the closest performance to TORA protocol in terms of routing packets overhead compared to ~M~a~M~OW . Relevant concepts are formalised for ORMAD approach and conducted as an analytical model in this thesis involving the\vhole process of multipath routing in AODV extensions. ORMAD analytical model describes how the two phases RDP and RMP interact with each other with regard to two performance metrics; total number of detected routes and Route Efficiency.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Cost Optimization Approach for MANET using Particle Swarm Optimization

    Get PDF
    This paper present the approach require to increase the QoS of MANET network using particle swarm optimization algorithm. To improve data communication between two nodes we propose an efficient algorithm for AODV protocol using PSO where instead of suppling all default parameter with default value of AODV protocol we try to provide selective parameters with optimum value so that overall requirement of control packet get decrease that in turn result in to increase quality of service parameters of MANET. For the enhancement of reliability and reduction of cost, node speed control mechanism is implemented using PSO, The given method which is use for simulation, reduces the overall loss of data and also make transmission effective. We have also tested the performance of network by changing data rates and the speed of the node

    An Improvement in Congestion Control Using Multipath Routing in Manet

    Get PDF
    The ad hoc connections, which opens many opportunities for MANET applications. In ad hoc network nodes are movable and there is no centralised management. Routing is an important factor in mobile ad hoc network which not only works well with a small network, but also it can also work well if network get expanded dynamically. Routing in Manets is a main factor considered among all the issues. Mobile nodes in Manet have limited transmission capacity, they intercommunicate by multi hop relay. Multi hop routing have many challenges such as limited wireless bandwidth, low device power, dynamically changing network topology, and high vulnerability to Failure. To answer those challenges, many routing algorithms in Manets were proposed. But one of the problems in routing algorithm is congestion which decreases the overall performance of the network so in this paper we are trying to identify the best routing algorithm which will improve the congestion control mechanism among all the Multipath routing protocols
    • …
    corecore