42,331 research outputs found

    How Unique is Your .onion? An Analysis of the Fingerprintability of Tor Onion Services

    Full text link
    Recent studies have shown that Tor onion (hidden) service websites are particularly vulnerable to website fingerprinting attacks due to their limited number and sensitive nature. In this work we present a multi-level feature analysis of onion site fingerprintability, considering three state-of-the-art website fingerprinting methods and 482 Tor onion services, making this the largest analysis of this kind completed on onion services to date. Prior studies typically report average performance results for a given website fingerprinting method or countermeasure. We investigate which sites are more or less vulnerable to fingerprinting and which features make them so. We find that there is a high variability in the rate at which sites are classified (and misclassified) by these attacks, implying that average performance figures may not be informative of the risks that website fingerprinting attacks pose to particular sites. We analyze the features exploited by the different website fingerprinting methods and discuss what makes onion service sites more or less easily identifiable, both in terms of their traffic traces as well as their webpage design. We study misclassifications to understand how onion service sites can be redesigned to be less vulnerable to website fingerprinting attacks. Our results also inform the design of website fingerprinting countermeasures and their evaluation considering disparate impact across sites.Comment: Accepted by ACM CCS 201

    A traffic classification method using machine learning algorithm

    Get PDF
    Applying concepts of attack investigation in IT industry, this idea has been developed to design a Traffic Classification Method using Data Mining techniques at the intersection of Machine Learning Algorithm, Which will classify the normal and malicious traffic. This classification will help to learn about the unknown attacks faced by IT industry. The notion of traffic classification is not a new concept; plenty of work has been done to classify the network traffic for heterogeneous application nowadays. Existing techniques such as (payload based, port based and statistical based) have their own pros and cons which will be discussed in this literature later, but classification using Machine Learning techniques is still an open field to explore and has provided very promising results up till now

    KISS: Stochastic Packet Inspection Classifier for UDP Traffic

    Get PDF
    This paper proposes KISS, a novel Internet classifica- tion engine. Motivated by the expected raise of UDP traffic, which stems from the momentum of Peer-to-Peer (P2P) streaming appli- cations, we propose a novel classification framework that leverages on statistical characterization of payload. Statistical signatures are derived by the means of a Chi-Square-like test, which extracts the protocol "format," but ignores the protocol "semantic" and "synchronization" rules. The signatures feed a decision process based either on the geometric distance among samples, or on Sup- port Vector Machines. KISS is very accurate, and its signatures are intrinsically robust to packet sampling, reordering, and flow asym- metry, so that it can be used on almost any network. KISS is tested in different scenarios, considering traditional client-server proto- cols, VoIP, and both traditional and new P2P Internet applications. Results are astonishing. The average True Positive percentage is 99.6%, with the worst case equal to 98.1,% while results are al- most perfect when dealing with new P2P streaming applications

    Optimal set of EEG features for emotional state classification and trajectory visualization in Parkinson's disease

    Get PDF
    In addition to classic motor signs and symptoms, individuals with Parkinson's disease (PD) are characterized by emotional deficits. Ongoing brain activity can be recorded by electroencephalograph (EEG) to discover the links between emotional states and brain activity. This study utilized machine-learning algorithms to categorize emotional states in PD patients compared with healthy controls (HC) using EEG. Twenty non-demented PD patients and 20 healthy age-, gender-, and education level-matched controls viewed happiness, sadness, fear, anger, surprise, and disgust emotional stimuli while fourteen-channel EEG was being recorded. Multimodal stimulus (combination of audio and visual) was used to evoke the emotions. To classify the EEG-based emotional states and visualize the changes of emotional states over time, this paper compares four kinds of EEG features for emotional state classification and proposes an approach to track the trajectory of emotion changes with manifold learning. From the experimental results using our EEG data set, we found that (a) bispectrum feature is superior to other three kinds of features, namely power spectrum, wavelet packet and nonlinear dynamical analysis; (b) higher frequency bands (alpha, beta and gamma) play a more important role in emotion activities than lower frequency bands (delta and theta) in both groups and; (c) the trajectory of emotion changes can be visualized by reducing subject-independent features with manifold learning. This provides a promising way of implementing visualization of patient's emotional state in real time and leads to a practical system for noninvasive assessment of the emotional impairments associated with neurological disorders

    Poseidon: a 2-tier Anomaly-based Network Intrusion Detection System

    Get PDF
    We present Poseidon, a new anomaly based intrusion detection system. Poseidon is payload-based, and presents a two-tier architecture: the first stage consists of a Self-Organizing Map, while the second one is a modified PAYL system. Our benchmarks on the 1999 DARPA data set show a higher detection rate and lower number of false positives than PAYL and PHAD
    corecore