10,428 research outputs found

    Transport on complex networks: Flow, jamming and optimization

    Get PDF
    Many transport processes on networks depend crucially on the underlying network geometry, although the exact relationship between the structure of the network and the properties of transport processes remain elusive. In this paper we address this question by using numerical models in which both structure and dynamics are controlled systematically. We consider the traffic of information packets that include driving, searching and queuing. We present the results of extensive simulations on two classes of networks; a correlated cyclic scale-free network and an uncorrelated homogeneous weakly clustered network. By measuring different dynamical variables in the free flow regime we show how the global statistical properties of the transport are related to the temporal fluctuations at individual nodes (the traffic noise) and the links (the traffic flow). We then demonstrate that these two network classes appear as representative topologies for optimal traffic flow in the regimes of low density and high density traffic, respectively. We also determine statistical indicators of the pre-jamming regime on different network geometries and discuss the role of queuing and dynamical betweenness for the traffic congestion. The transition to the jammed traffic regime at a critical posting rate on different network topologies is studied as a phase transition with an appropriate order parameter. We also address several open theoretical problems related to the network dynamics

    Reducing Congestion Effects by Multipath Routing in Wireless Networks

    Get PDF
    We propose a solution to improve fairness and increasethroughput in wireless networks with location information.Our approach consists of a multipath routing protocol, BiasedGeographical Routing (BGR), and two congestion controlalgorithms, In-Network Packet Scatter (IPS) and End-to-EndPacket Scatter (EPS), which leverage BGR to avoid the congestedareas of the network. BGR achieves good performancewhile incurring a communication overhead of just 1 byte perdata packet, and has a computational complexity similar togreedy geographic routing. IPS alleviates transient congestion bysplitting traffic immediately before the congested areas. In contrast,EPS alleviates long term congestion by splitting the flow atthe source, and performing rate control. EPS selects the pathsdynamically, and uses a less aggressive congestion controlmechanism on non-greedy paths to improve energy efficiency.Simulation and experimental results show that our solutionachieves its objectives. Extensive ns-2 simulations show that oursolution improves both fairness and throughput as compared tosingle path greedy routing. Our solution reduces the variance ofthroughput across all flows by 35%, reduction which is mainlyachieved by increasing throughput of long-range flows witharound 70%. Furthermore, overall network throughput increasesby approximately 10%. Experimental results on a 50-node testbed are consistent with our simulation results, suggestingthat BGR is effective in practice

    Scaling behavior of an artificial traffic model on scale-free networks

    Get PDF
    In this article, we investigate an artificial traffic model on scale-free networks. Instead of using the routing strategy of the shortest path, a generalized routing algorithm is introduced to improve the transportation throughput, which is measured by the value of the critical point disjoining the free-flow phase and the congested phase. By using the detrended fluctuation analysis, we found that the traffic rate fluctuation near the critical point exhibits the 1/f1/f-type scaling in the power spectrum. The simulation results agree very well with the empirical data, thus the present model may contribute to the understanding of the underlying mechanism of network traffics.Comment: 6 pages, 5 figure

    Dynamical properties of model communication networks

    Get PDF
    We study the dynamical properties of a collection of models for communication processes, characterized by a single parameter ξ\xi representing the relation between information load of the nodes and its ability to deliver this information. The critical transition to congestion reported so far occurs only for ξ=1\xi=1. This case is well analyzed for different network topologies. We focus of the properties of the order parameter, the susceptibility and the time correlations when approaching the critical point. For ξ<1\xi<1 no transition to congestion is observed but it remains a cross-over from a low-density to a high-density state. For ξ>1\xi>1 the transition to congestion is discontinuous and congestion nuclei arise.Comment: 8 pages, 8 figure
    corecore